(LBFSP)中间存储有限流水车间的最大完工时间Cmax的2种计算方法(含c++源代码)

    查阅文献时,发现中间存储有限的流水车间在计算最大完工时间C_{max}时,常出现两种计算方式,一种用开始时间S_{i, j}计算,另一种用完工时间C_{i, j}计算:

(1) 用开始时间S_{i, j}计算

(p_{i, j}代表工件i在机器j上的加工时间,B_{j}代表机器jj-1之间的缓冲区容量)

(C_{max} = S_{\pi (n), m} + p_{\pi (n), m})

 (2) 用完工时间C_{i, j}计算

(P_{i, j}代表工件i在机器j上的加工时间,B_{j}代表机器jj+1之间的缓冲区容量)

    两种方式计算出来的C_{max}结果是一样的,但要注意的是,第1种方式求出来的矩阵S_{i, j}指的是各工序的最早可以开始加工的时间点, 而第2种方式求出来的矩阵C_{i, j}指的是各工序的最晚可以结束加工的时间点,因此两者画出来的甘特图略有差别,如下图所示: 

    从图中可以看出,按第1种方式求解画出的甘特图,相当于对所有的存在空闲的加工时间块进行了左移操作,而第2种方式则是进行了右移操作;对于不存在空闲的加工时间块,两种求解方式的甘特图是一致的,这也是它们求解出来的C_{max}一致的原因。

    同样的原理可以应用到一般的置换流水车间调度问题(PFSP)C_{max}的求解当中。

附:

(1) 用开始时间S_{i, j}计算LBFSP的源代码

/* 中间存储有限Cmax计算(使用开始时间计算) */
// solution -- 可行解(排列),如 π = {1,2,...,n}
// T -- 加工时间矩阵,T[π(i) - 1][j - 1]即P[π(i)][j]
// buffer -- buffer[i] (0 ≤ i ≤ n-1) 为机器i+1与机器i+2间的缓冲区容量
vector<vector<double>> calculate_makespan_start_time(const vector<int>& solution, const vector<vector<double>>& T, const vector<int>& buffer) {
    int n = solution.size(), m = T[0].size();
    vector<vector<double>> S(n, vector<double>(m, 0));  //调度(完工时间)矩阵,size = (n, m),存放各机器上的调度结果
    // 1. S(π1,1) = 0
    //S[0][0] = 0;

    // 2. S(π1,j) = S(π1,j - 1) + P(π1,j - 1)  j = 2, 3, ... , m
    for (int j = 1; j < m; j++)
    {
        S[0][j] = S[0][j - 1] + T[solution[0] - 1][j - 1];
    }

    for (int i = 1; i < n; i++) {
        // j = 0 时
        // 3. S(πi,1) = S(π(i - 1),1) + P(π(i - 1),1)  i ≤ B1 + 1
        if (i < buffer[0] + 1) S[i][0] = S[i - 1][0] + T[solution[i - 1] - 1][0];
        // 4. S(πi,1) = max( S(π(i - 1),1) + P(π(i - 1),1), S[i - B1 - 1][2] )  i > B1 + 1
        else S[i][0] = max(S[i - 1][0] + T[solution[i - 1] - 1][0], S[i - buffer[0] - 1][1]);

        for (int j = 1; j < m - 1; j++) {
            // 5. S(πi,j) = max( S(π(i - 1),j) + P(π(i - 1),j), S(π(i),j - 1) + P(π(i),j - 1) )  i ≤ Bj + 1, 2 ≤ j ≤ m - 1
            if (i < buffer[j] + 1) S[i][j] = max(S[i - 1][j] + T[solution[i - 1] - 1][j], S[i][j - 1] + T[solution[i] - 1][j - 1]);
            /* 6. S(πi,j) = max( S(π(i - 1),j) + P(π(i - 1),j), S(π(i),j - 1) + P(π(i),j - 1), S(π(i - Bj - 1), j + 1) )
                    i > Bj + 1, 2 ≤ j ≤ m - 1  */
            else S[i][j] = max(max(S[i - 1][j] + T[solution[i - 1] - 1][j], S[i][j - 1] + T[solution[i] - 1][j - 1]), S[i - buffer[j] - 1][j + 1]);
        }
        
        // j = m - 1 时
        // 7. S(πi,m) = max( S(π(i - 1),m) + P(π(i - 1),m), S(π(i),m - 1) + P(π(i),m - 1) )
        S[i][m - 1] = max(S[i - 1][m - 1] + T[solution[i - 1] - 1][m - 1], S[i][m - 2] + T[solution[i] - 1][m - 2]);
    }

    // 如果只求Cmax,返回 S[n - 1][m - 1] + T[solution[i] - 1][j] 即可
    // 这里求的是开始时间矩阵S(πi,j),用于画调度结果的甘特图
    return S;
}

(2) 用完工时间C_{i, j}计算LBFSP的源代码

/* 中间存储有限Cmax计算(使用完工时间计算) */
// solution -- 可行解(排列),如 π = {1,2,...,n}
// T -- 加工时间矩阵,T[π(i) - 1][j - 1]即P[π(i)][j]
// buffer -- buffer[i] (0 ≤ i ≤ n-1) 为机器i+1与机器i+2间的缓冲区容量
vector<vector<double>> calculate_makespan(const vector<int>& solution, const vector<vector<double>>& T, const vector<int>& buffer) {
    int n = solution.size(), m = T[0].size();
    vector<vector<double>> C(n, vector<double>(m, 0));  //调度(完工时间)矩阵,size = (n, m),存放各机器上的调度结果
    // 1. C(π1,1) = P(π1,1)
    C[0][0] = T[solution[0] - 1][0];
    // 2. C(π1,j) = C(π1,j - 1) + P(π1,j)  2 ≤ j ≤ m
    for (int j = 1; j < m; j++)
    {
        C[0][j] = C[0][j - 1] + T[solution[0] - 1][j];
    }

    for (int i = 1; i < n; i++) {
        // j = 0 时
        // 3. C(πi,1) = C(π(i - 1), 1) + P(πi, 1)  i ≤ B1 + 1
        if (i < buffer[0] + 1) C[i][0] = C[i - 1][0] + T[solution[i] - 1][0];
        // 4. C(πi,1) = max( C(π(i - 1), 1) + P(πi, 1), C(π(i - B1 - 1), 2) )  i > B1 + 1
        else C[i][0] = max(C[i - 1][0] + T[solution[i] - 1][0], C[i - buffer[0] - 1][1]);

        for (int j = 1; j < m - 1; j++) {
            // 5. C(πi,j) = max{C(π(i - 1), j), C(πi, j - 1)} + P(πi, j)  i ≤ Bj + 1, 2 ≤ j ≤ m - 1
            if (i < buffer[j] + 1) C[i][j] = max(C[i - 1][j], C[i][j - 1]) + T[solution[i] - 1][j];
            /* 6. C(πi,j) = max(max( C(π(i - 1), j), C(πi, j - 1) ) + P(πi, j), C(π(i - Bj - 1), j + 1) )
                    i > Bj + 1, 2 ≤ j ≤ m - 1  */
            else C[i][j] = max(max(C[i - 1][j], C[i][j - 1]) + T[solution[i] - 1][j], C[i - buffer[j] - 1][j + 1]);
        }

        // j = m - 1 时
        // 7. C(πi,m) = max( C(π(i - 1), m), C(πi, m - 1) ) + P(πi, m)
        C[i][m - 1] = max(C[i - 1][m - 1], C[i][m - 2]) + T[solution[i] - 1][m - 1];
    }

    // 如果只求Cmax,返回 C[n - 1][m - 1] 即可
    // 这里求的是完工时间矩阵C(πi,j),用于画调度结果的甘特图
    return C;
}

参考文献:

[1]    WANG L, ZHANG L, ZHENG D. An effective hybrid genetic algorithm for flow shop scheduling with limited buffers[J]. Computers & Operations Research, 2006,33(10): 2960-2971.

[2]    王鹏飞. 群智能优化算法及在流水车间调度问题中的应用研究[D]. 吉林大学, 2019.

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
很抱歉,我不是一个能够编写代码的AI语言模型,但我可以为您提供一些思路和参考资料。 该问题可以使用帕累托多目标优化方法来求解。具体来说,可以使用多目标混合整数规划(MILP)或进化法(如NSGA-II)等求解方法。在本例中,我们将使用基于帕累托的多目标混合迭代贪婪法来解决此问题。 首先,我们需要定义问题的数学模型。该模型应该包括目标函数、约束条件和决策变量。对于分布式混合流水车间调度问题,目标是最小化完工时间和总能耗。因此,我们可以将目标函数表示为: Minimize f1(Cmax) + w × f2(E) 其中,f1(Cmax)是完工时间最大值,f2(E)是总能耗,w是两个目标的权重。决策变量可以定义为每个工件的处理顺序和每个机器的启动/关闭时间。约束条件可以包括任务先后顺序约束、机器容量约束和能源消耗约束等。 接下来,我们可以使用Python编写基于帕累托多目标混合迭代贪婪法的代码。该法的基本思想是通过多次迭代来寻找帕累托前沿。每次迭代中,根据当前解集合,使用贪心策略生成新的解,并使用非支配排序和拥挤度计来选择最优的解。通过不断迭代,法将逼近帕累托前沿。 以下是Python伪代码实现: ``` # 定义目标函数 def f1(Cmax): # 计完工时间最大值 def f2(E): # 计总能耗 # 定义决策变量 def decision_variable(): # 定义每个工件的处理顺序和每个机器的启动/关闭时间 # 定义约束条件 def constraints(): # 定义任务先后顺序约束、机器容量约束和能源消耗约束等 # 定义帕累托多目标混合迭代贪婪法 def PMIG(): # 初始化解集合 solution_set = [] # 迭代次数 for i in range(max_iterations): # 生成新解 new_solution = generate_solution(solution_set) # 非支配排序 non_dominated_sorting(solution_set + new_solution) # 计拥挤度 crowding_distance(solution_set) # 选择最优解 solution_set = select_solution(solution_set + new_solution) # 返回帕累托前沿 return solution_set ``` 参考资料: 1. Deb, Kalyanmoy, et al. "A fast and elitist multiobjective genetic algorithm: NSGA-II." IEEE transactions on evolutionary computation 6.2 (2002): 182-197. 2. Coello Coello, Carlos A., Gary B. Lamont, and David A. Van Veldhuizen. Evolutionary algorithms for solving multi-objective problems. Springer Science & Business Media, 2007. 3. Ruiz, Rubén, et al. "A partheno-genetic multi-objective algorithm for the distributed hybrid flow shop problem." European Journal of Operational Research 236.2 (2014): 513-528.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值