学习笔记-排序算法(简单介绍)

介绍

排序也称排序算法(Sort Algorithm),排序是将一组数据,依指定的顺序进行排列过程。

分类

内部排序:指将需要处理的所有数据都加载到内部存储器中进行排序。
外部排序法:数据量过大,无法全部加载到内存中,需要借助外部存储行序。

常见的排序算法分类在这里插入图片描述

算法的时间复杂度

1)事后统计的方法:这种方法可行,但是有两个问题:一是要想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得时间的统计量依赖于计算机的硬件.软件等环境因素,这种方式,要在同一台计算机的相同状态下运行,才能比较那个算法速度更快
2)事前估算的方法:通过分析某个算法的时间复杂度来判断哪个算法更优。

时间频度

一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多.一个算法中的语句执行次数称为语句频度或时间频度.记为T(n)。

时间复杂度

1)一般情况下,算法中的基本操作语句的重复执行次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n) /f(n) 的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数.记作 T(n)=O( f(n) ),称O( f(n) ) 为算法的渐进时间复杂度,简称时间复杂度。
2)T(n) 不同,但时间复杂度可能相同.如:T(n)=n²+7n+6 与 T(n)=3n²+2n+2 它们的T(n) 不同,但时间复杂度相同,都为O(n²)
3)计算时间复杂度的方法:

  • 用常数1代替运行时间中的所有加法常数T(n)=n²+7n+6=>T(n)=n²+7n+1
  • 修改后的运行次数函数中,只保留最高阶项T(n)=n²+7n+1 => T(n) = n²
  • 去除最高阶项的系数T(n)=n²=>T(n)= n²=> O(n²)

常见的时间复杂度

在这里插入图片描述
说明: 常见的算法时间复杂度由小到大依次为:Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)< Ο(nk) <Ο(2n),随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低 从图中可见,我们应该尽可能避免使用指数阶的算法。

  • 常数阶O(1):无论代码执行了多少行,只要是没有循环等复杂结构,那这个代码的时间复杂度就都是O(1),它并不随着某个变量的增长而增长。
    在这里插入图片描述

  • 对数阶O(log2n):在while循环里面,每次都将i乘以2,乘完之后,i距离n就越来越近了.假设循环x次之后,i就大于2了,此时这个循环就退出了,也就是说2的x次方等于n,那么x=log2n也就是说当循环log2n次以后,这个代码就结束了.因此这个代码的时间复杂度为:O(log2n). O(log2n)的这个2时间上是根据代码变化的,i=i*3 ,则是O(log3n).
    在这里插入图片描述在这里插入图片描述

  • 线性阶O(n):for循环里面的代码会执行n遍,因此它消耗的时间是随着n的变化而变化的,因此这类代码都可以用O(n)来表示它的时间复杂度。
    在这里插入图片描述

  • 线性对数阶O(nlogN):线性对数阶O(nlogN)其实非常容易理解,将时间复杂度为O(logn)的代码循环N遍的话,那么它的时间复杂度就是n* O(logN),也就是了O(nlogN)。
    在这里插入图片描述

  • 平方阶O(n²):平方阶O(n²)就更容易理解了,如果把O(n)的代码再嵌套循环一遍,它的时间复杂度就是O(n²),这段代码其实就是嵌套了2层n循环,它的时间复杂度就是O(nn),即O(n²) 如果将其中一层循环的n改成m,那它的时间复杂度就变成了O(mn)。
    在这里插入图片描述

平均时间复杂度和最坏时间复杂度

1)平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间.
2)最坏情况下的时间复杂度称最坏时间复杂度.一般讨论的时间复杂度均是最坏情况下的时间复杂度. 这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏情况更长.
3)平均时间复杂度和最坏时间复杂度是否一致,和算法有关(如图).
在这里插入图片描述

空间复杂度

1)类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模n的函数。
2)空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度.有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元,例如快速排序和归并排序算法就属于这种情况。
3)在做算法分析时,主要讨论的是时间复杂度.从用户使用体验上看,更看重的程序执行的速度.一些缓存产品(redis, memcache)和算法(基数排序)本质就是用空间换时间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值