扩展欧几里德算法

模板

void exgcd(int a,int b)
{
	if (b==0)
	{
		x=1;
		y=0;
		return ;  //得到gcd(b,0)时到达边界值
	}  //
	else
	{
		exgcd(b,a%b);
		int k=x;
		x=y;
		y=k-(a/b)*y;  //根据上方推出的公式进行递归求出结果
	}
	return ;
}

P1082 同余方程
题目描述

求关于 xx的同余方程 ax≡1(mod b) 的最小正整数解。

输入格式
一行,包含两个正整数 a,ba,b,用一个空格隔开。

输出格式
一个正整数 x_0x
0
​ ,即最小正整数解。输入数据保证一定有解。

输入输出样例
输入 #1 复制

3 10

输出 #1 复制

7

说明/提示
【数据范围】

对于 40%的数据,2 ≤b≤ 1,0002≤b≤1,000;

对于 60%的数据,2 ≤b≤ 50,000,0002≤b≤50,000,000;

对于 100%的数据,2 ≤a, b≤ 2,000,000,0002≤a,b≤2,000,000,000。

NOIP 2012 提高组 第二天 第一题

对于同余方程ax ≡ 1 (mod b),如果转化为我们易懂的语言就是
求满足ax%b=1,1%b=1最小正整数解。

#include <cstdio>
#include <iostream>
using namespace std;
int a,q;
int x,y;
void exgcd(int a,int b)
{
	if (b==0)
	{
		x=1;
		y=0;
		return ;  //得到gcd(b,0)时到达边界值
	}  //
	else
	{
		exgcd(b,a%b);
		int k=x;
		x=y;
		y=k-(a/b)*y;  //根据上方推出的公式进行递归求出结果
	}
	return ;
}
int main()
{
	scanf("%d%d",&a,&q);  
	exgcd(a,q);
	printf("%lld",(x+q)%q);
	return 0;
}

exgcd(拓展欧几里得)
1.回顾辗转相除法求最大公倍数:

(辗转相除法和下面所讲到的算法里面的m和n没什么关系可正可负 更没有大小关系的区分)

代码:

#include<stdio.h>
int gcd(int a,int b)
{
    int temp;   
    if(b==0){
        return a;  // b=0 满足关系跳出循环,此时a的值就是最大公约数
    }
    return gcd(b,a%b);
 
}
int main()
{
    int a,b;
    scanf("%d%d",&a,&b);
    printf("%d\n",gcd(a,b));
    return 0;
}

2.exgcd:

a.求二元一次方程的一组特解:

原理:

•ax+by=gcd(a,b)
 
•∵ gcd(a,b) = gcd(b,a%b)
 
•∴ ax1+by1 = bx2+(a%b)y2   //可以知道 a在被替换成了b,b被替换成了a%b 
 
•则 ax1+by1 = bx2+(a-a/b*b)y2
 
•∴ ax1+by1 = ay2+b(x2-a/b*y2)
 
•∴ x1=y2 y1=(x2-a/b*y2)   //这一步的x等于上一步的y,y等于(x2-a/b*y2)  x2 y2 代表上一步的x和y
 
•当b==0时,ax+by = gcd(a,b) = a
 
•∴ x=1 , y=0;

Code:

#include<stdio.h>
int GCD;
int gcd(int a,int b,int &x,int &y)  //&x 类似于指针在c++函数调用中可以将x的值改变
{
    if(!b){               ②
        x=1;y=0;return a;       
    }                             //调用的函数运行顺序
    GCD=gcd(b,a%b,y,x);   ①       //调用函数时的&不能加,错误不太容易发现  
    y-=a/b*x;             3 4 ...
    return GCD;                //最后返回的GCD的含义其实就是a和b的最大公约数
}
int main()
{
    int a,b,x,y;
    scanf("%d%d",&a,&b);
    GCD=gcd(a,b,x,y);          
    printf("%d %d %d",x,y,GCD);
    return 0;
}

b.求通解:

•ax + by = gcd(a,b)  的解集
 
•首先可以肯定它一定有解且解的数量无限
 
•我们可以找出式子可以加减的最小元 即最小公倍数lcm
 
•若x +- b/gcd y-+ a/gcd 则等式依然成立            //如果x后为+ 则y后为-
 
•便可得知解集

c.判断ax+by=c是否有解:

只要c为gcd(a,b)的倍数,就有无数组解

例: 38x+8y=gcd(38,8)=2; ①

如果此时c=6 即:38x+8y=6; ②

计算②式特解的方法: 先算出①式的特解 然后将x和y同时乘于6 / gcd(38,8)就能得到一组特解;

d.求最小整数解:

                   //用于解决ax+by=c类的求最小整数解  
GCD=exgcd(a,b);
x=c/GCD;           //如果非上面的类型而直接是=gcd(a,b) 可将这一步去掉即可
t=b/GCD:
if(t<0){
    t=-t;          //防止b/GCD为负数
}
x=(x%t+t)%t;

转载连接:https://blog.csdn.net/weixin_43350051/article/details/86371934
P1516 青蛙的约会
题目描述
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。

我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入格式
输入只包括一行5个整数x,y,m,n,L

其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。

输出格式
输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。

输入输出样例
输入 #1 复制

1 2 3 4 5

输出 #1 复制

4

Code:
套用公式
a=n-m; b=l;c=x-y;
然后求最小整数解:

                   //用于解决ax+by=c类的求最小整数解  
GCD=exgcd(a,b);
x=c/GCD;           //如果非上面的类型而直接是=gcd(a,b) 可将这一步去掉即可
t=b/GCD:
if(t<0){
    t=-t;          //防止b/GCD为负数
}
x=(x%t+t)%t;
#include<bits/stdc++.h>

using namespace std;
typedef long long LL;
LL Exgcd(LL a,LL b,LL &x,LL &y)
{
    if(b==0){
        x=1;
        y=0;
        return a;
    }
    else{
        LL r=Exgcd(b,a%b,x,y);
        LL t;
        t=x;
        x=y;
        y=t-a/b*y;
        return r;   //r是公倍数
    }
}
int main()
{
    LL x,y,m,n,l;
    cin>>x>>y>>m>>n>>l;
    LL a=n-m;
    LL b=l;
    LL c=x-y;
    if(a<0){
        a=-a;
        c=-c;
    }
    LL x0,y0;
    LL z=Exgcd(a,b,x0,y0);

    if(c%z==0){
        LL k=l/z;
        printf("%lld\n",((x0*c/z)%k+k)%k);//求最小整数解
    }
    else{
        printf("Impossible\n");
    }

    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值