在colab上加载minst数据集

该博客介绍了如何在Google Colaboratory(Colab)中利用Keras加载MNIST手写数字数据集。首先,导入必要的库,然后通过Keras的`mnist.load_data()`函数获取训练和测试数据。接着,为了适应全连接层的需求,将数据重塑为神经网络所需的格式。最后,对数据进行了简单的预处理,以便用于模型训练。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在colab上加载minst数据集 ``

// An highlighted block
import numpy as np
from keras.datasets import mnist
from keras.models import Sequential,Model
from keras.layers.core import Dense,Activation,Dropout
from keras.utils import np_utils

import matplotlib.pyplot as plt
import matplotlib.image as processimage

#load mnist RAW dataset拉取原始数据
(X_train,Y_train),(X_test,Y_test)=mnist.load_data()
print(X_train.shape,Y_train.shape)
print(X_test.shape,Y_test.shape)

#准备数据
#因为使用的是全连接层,不认识矩阵,只认识向量
#所以需要把数据准备成神经网络需要的数据

X_train = X_train.reshape(60000,28*28)
X_test = X_test.reshape(10000,28*28)

参考:
https://blog.csdn.net/qq_36281420/article/details/105916040?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522163074426716780265470782%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=163074426716780265470782&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_ecpm_v1~rank_v29_ecpm-1-105916040.first_rank_v2_pc_rank_v29&utm_term=colab%E5%8A%A0%E8%BD%BDminst&spm=1018.2226.3001.4187

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值