可建立本地知识库的大语言模型交互工具

本文将介绍一个能建立本地知识库的大语言模型交互工具,利用该工具,可以将本地自有资料投入到工具框架内供大模型参考调用,允许用户完全私有化部署和定制自己的 AI 助手,支持文档问答、知识库管理功能。

AnythingLLM 提供简洁的 Web UI,支持多用户管理和对话历史记录。 既可以通过 Ollama、LM Studio 等运行开源模型(如 Llama3、Mistral), 也可以通过API Key对接 DeepSeek、OpenAI、Anthropic 等在线商业服务。

其核心模块是加载使用本地知识库功能,具备解析上传文件(如 Excel、Word、PDF 提取文本),使用文本嵌入模型(如 sentence-transformers)生成向量。该功能尤其适合快速查询手册、合同等文档,以及论文和数据的私有化处理。

首先需要下载安装软件

图片

图片

图片

根据提示选择合适的设置

图片

运行AnythingLLM

图片

首先需要选择使用的语言模型,可以选择开源模型下载到本地,也可以选择通过API Key对接在线服务商业模型。

图片

图片

在这里本文范例选择了DEEPSEEK的在线服务,通过官网进入API开放平台,获取API Key

图片

图片

将API Key填进后可以选择DeepSeek- chat或者DeepSeek-rensoner.

图片

默认设置好了,开始到对话工作区

图片

给工作区取名,可以根据需要随意取名,这个名称只是标记你的对话空间。然后就可以开始对话了:

图片

下面介绍的是AnythingLLM软件的个性化功能:本地知识库的使用。

在对话界面点击下图红框标识的按钮

图片

弹出下面的界面

图片

点击 Click to upload or drag and drop

图片

在复选框内选择你准备的资料,将资料从My documents MOVE 至工作区内,点击 Save and Embed, 加载完成后在工作区内选择Pinned。需要说明的是, 该操作的所有任务都是针对本地的, 资料不会离开本地计算机。操作完成后退回到对话界面,再次进行对话时, 大模型对问题的回答将参考所提供的资料。

图片

图片

从提示中可以看出,大模型在回答问题时已经参考了所提供的资料数据

图片

通过打开文件核对,所提供的答案确实是完全引用了表格中的数据。

对于用户所持有的资料比较敏感和私密的情况下,可以在选择大模型时可以选择能在本地运行的开源模型, 所有工作在不依赖网络的情况下完成。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值