本文将介绍一个能建立本地知识库的大语言模型交互工具,利用该工具,可以将本地自有资料投入到工具框架内供大模型参考调用,允许用户完全私有化部署和定制自己的 AI 助手,支持文档问答、知识库管理功能。
AnythingLLM 提供简洁的 Web UI,支持多用户管理和对话历史记录。 既可以通过 Ollama、LM Studio 等运行开源模型(如 Llama3、Mistral), 也可以通过API Key对接 DeepSeek、OpenAI、Anthropic 等在线商业服务。
其核心模块是加载使用本地知识库功能,具备解析上传文件(如 Excel、Word、PDF 提取文本),使用文本嵌入模型(如 sentence-transformers)生成向量。该功能尤其适合快速查询手册、合同等文档,以及论文和数据的私有化处理。
首先需要下载安装软件
根据提示选择合适的设置
运行AnythingLLM
首先需要选择使用的语言模型,可以选择开源模型下载到本地,也可以选择通过API Key对接在线服务商业模型。
在这里本文范例选择了DEEPSEEK的在线服务,通过官网进入API开放平台,获取API Key
将API Key填进后可以选择DeepSeek- chat或者DeepSeek-rensoner.
默认设置好了,开始到对话工作区
给工作区取名,可以根据需要随意取名,这个名称只是标记你的对话空间。然后就可以开始对话了:
下面介绍的是AnythingLLM软件的个性化功能:本地知识库的使用。
在对话界面点击下图红框标识的按钮
弹出下面的界面
点击 Click to upload or drag and drop
在复选框内选择你准备的资料,将资料从My documents MOVE 至工作区内,点击 Save and Embed, 加载完成后在工作区内选择Pinned。需要说明的是, 该操作的所有任务都是针对本地的, 资料不会离开本地计算机。操作完成后退回到对话界面,再次进行对话时, 大模型对问题的回答将参考所提供的资料。
从提示中可以看出,大模型在回答问题时已经参考了所提供的资料数据
通过打开文件核对,所提供的答案确实是完全引用了表格中的数据。
对于用户所持有的资料比较敏感和私密的情况下,可以在选择大模型时可以选择能在本地运行的开源模型, 所有工作在不依赖网络的情况下完成。