目录
一、计算机科学入门
- CS 10 - 计算之美与乐趣 - 2015 年春季 - 丹・加西亚 - 加州大学伯克利分校 InfoCoBuild
- 6.0001 - 用 Python 进行计算机科学与编程导论 - 麻省理工学院开放课程
- 6.001 - 计算机程序的构造和解释,麻省理工学院
- 计算思维导论 - 麻省理工学院
- CS 50 - 计算机科学导论,哈佛大学 (cs50.tv)
- CS50R - 用 R 进行编程导论 (讲座视频) (Lecture Videos)
- CS 61A - 计算机程序的构造和解释 [Python], UC Berkeley
- CPSC 110 - 系统程序设计 [Racket], University of British Columbia
- CS50 的技术理解
- CSE 142 计算机编程 I(Java 编程), 2016 年春季 - 华盛顿大学
- CS 1301 计算导论 - 佐治亚理工学院
- CS 106A - 编程方法论,斯坦福大学 (Lecture Videos)
- CS 106B - 编程抽象,斯坦福大学 (Lecture Videos)
- CS 106L - 标准 C++ 编程(Lecture Videos)
- CS 106X - C++ 编程抽象 (Lecture Videos)
- CS 107 - 编程范式, 斯坦福大学
- CmSc 150 - 用街机游戏进行编程导论,辛普森学院
- LINFO 1104 - 计算机编程范式,彼得・范・罗伊,比利时鲁汶天主教大学 - EdX
- FP 101x - 函数式编程导论,代尔夫特理工大学
- 问题求解与编程导论 - 印度理工学院坎普尔分校
- C 语言编程导论 - 印度理工学院坎普尔分校
- C++ 编程 - 印度理工学院卡拉格普尔分校
- 2016 年秋季 Python 训练营 - 伯克利数据科学研究所(BIDS)
- CS 101 - 计算机科学导论 - 优达学城
- 6.00SC - 计算机科学与编程导论(2011 年春季) - 麻省理工学院开放课程
- 6.00 - 计算机科学与编程导论(2008 年秋季) - 麻省理工学院开放课程
- 6.01SC - 电气工程与计算机科学导论 I - 麻省理工学院开放课程
- 现代 C++ 课程(2018 年) - 波恩大学
- 现代 C++(讲座与教程,2020 年,维佐与施塔希尼斯) - 波恩大学
- 威斯康星大学麦迪逊分校 CS 368 面向 Java 程序员的 C++,2020 年秋季,迈克尔・多伊舍尔
- 威斯康星大学麦迪逊分校 CS 354 计算机组织与编程,2020 年春季、2021 年春季,迈克尔・多伊舍尔
- 康奈尔大学 ECE 4960 计算与软件工程,2017 年春季,埃德温・坎
二、数据结构与算法
- ECS 36C - 数据结构与算法(C++)- 2020年春季 - Joël Porquet-Lupine - 加州大学戴维斯分校
- 使用Python的编程与数据结构,2021-2022学年,第一学期 - Madhavan Mukund教授,CMI
- 6.006 - 算法导论,麻省理工学院开放式课程
- 麻省理工学院6.006算法导论,2020年春季
- 算法设计与分析1 - 斯坦福大学
- 算法设计与分析2 - 斯坦福大学
- COS 226算法,Youtube,普林斯顿大学 - 由Robert Sedgewick和Kevin Wayne主讲
- CSE 331算法设计与分析导论,纽约州立大学布法罗分校,2017年秋季 (课程视频) (作业讲解)
- CSE 373 - 算法分析,石溪大学 - Skiena教授
- COP 3530数据结构与算法,Sahni教授,佛罗里达大学 (视频)
- CS225 - 数据结构 - 伊利诺伊大学厄巴纳-香槟分校(视频课程)
- CS2 - 数据结构与算法 - Richard Buckland - 新南威尔士大学
- 数据结构 - 佩珀代因大学
- CS 161 - 算法设计与分析,Tim Roughgarden教授,斯坦福大学
- 6.046J - 算法导论 - 2005年秋季,麻省理工学院开放式课程
- 算法导论(2020年春季),麻省理工学院开放式课程
- 6.046 - 算法设计与分析,2015年春季 - 麻省理工学院开放式课程
- CS 473 - 算法 - 伊利诺伊大学厄巴纳-香槟分校 (笔记 - Jeff Erickson) (YouTube)
- COMP300E - 编程挑战,Skiena教授,香港科技大学 - 2009
- 16s-4102 - 算法,弗吉尼亚大学 (Youtube)
- CS 61B - 数据结构(Java) - 加州大学伯克利分校(Youtube)
- CS 170算法 - 加州大学伯克利分校 2019年秋季,Youtube 2018年秋季,Youtube 2018年秋季,哔哩哔哩 2013年,哔哩哔哩
- CS 159数据驱动算法设计 - 加州理工学院 2020年春季,Youtube
- ECS 122A - 算法设计与分析,加州大学戴维斯分校
- CSEP 521 - 应用算法,2013年冬季 - 华盛顿大学 (视频)
- 数据结构与算法 - 印度理工学院德里分校
- 算法设计与分析 - 印度理工学院孟买分校
- 编程、数据结构与算法 - 印度理工学院马德拉斯分校
- 算法设计与分析 - 印度理工学院马德拉斯分校
- 基础算法:设计与分析 - 印度理工学院卡拉格普尔分校
- 编程与数据结构 - 印度理工学院卡拉格普尔分校
- 编程、数据结构与算法 - 印度理工学院马德拉斯分校
- Python编程、数据结构与算法 - 印度理工学院马德拉斯分校
- 编程与数据结构(PDS) - 印度理工学院马德拉斯分校
- COP 5536高级数据结构,Sahni教授 - 佛罗里达大学 (视频)
- CS 261 - 算法进阶课程,斯坦福大学 (Youtube)
- CS 224 - 高级算法,哈佛大学 (课程视频) (Youtube)
- CS 6150 - 高级算法(2016年秋季),犹他大学
- CS 6150 - 高级算法(2017年秋季),犹他大学
- ECS 222A - 研究生算法设计与分析,加州大学戴维斯分校
- 6.851 - 高级数据结构,麻省理工学院 (麻省理工学院开放式课程)
- 6.854 - 高级算法,麻省理工学院 (Karger教授课程)
- CS264超越最坏情况分析,2014年秋季 - Tim Roughgarden课程 (Youtube)
- CS364A算法博弈论,2013年秋季 - Tim Roughgarden课程
- CS364B高级机制设计,2014年冬季 - Tim Roughgarden课程
- 算法 - Aduni
- 6.889 - 平面图及扩展算法(2011年秋季)麻省理工学院
- 6.890算法下界:难解性证明的乐趣 - 麻省理工学院开放式课程
- 计算机算法 - 2 - 印度理工学院坎普尔分校
- 并行算法 - 印度理工学院坎普尔分校
- 图论 - 印度科学学院班加罗尔分校
- 数据结构 - mycodeschool
- 算法博弈论,2020/21年冬季 - 波恩大学
- NETS 4120: 算法博弈论,2023年春季 - 宾夕法尼亚大学
- 博弈论与机制设计导论 - 印度理工学院坎普尔分校
- 15-850高级算法 - 卡内基梅隆大学2023年春季
- CS 270. 组合算法与数据结构,2021年春季 (Youtube)
- 卡内基梅隆大学15 850高级算法2023年春季,由Anupam Gupta主讲
- 加州大学伯克利分校CS 294-165草图算法2020年秋季,由Jelani Nelson主讲
- 伊利诺伊大学厄巴纳-香槟分校CS 498 ABD / CS 598 CSC大数据算法2020年秋季,由Chandra Chekuri主讲
- 数据科学算法2021年春季,由Anil Maheshwari主讲
- 卡内基梅隆大学15 859大数据算法2020年秋季,由David Woodruff主讲
- CO 642图论 - 滑铁卢大学
- COMS W4241数值算法2006年春季,由Henryk Wozniakowski - 哥伦比亚大学
- 波恩算法与不确定性2021年夏季,由Thomas Kesselheim主讲
- 哈佛大学信息论2022年,由Gregory Falkovich主讲
- 数学510 - 线性规划与网络流 - 科罗拉多州立大学
- LINFO 2266高级优化算法2021年,由Pierre Schaus - 鲁汶大学
- 麻省理工学院6.854 / 18.415高级算法2016年春季,由Ankur Moitra主讲
- 卡内基梅隆大学10 801高级优化与随机算法2014年春季,由Suvrit Sra和Alex Smola主讲
- 加州大学圣克鲁兹分校CSE 202组合算法2021年春季,由Seshadhri Comandur主讲
- 加州大学圣克鲁兹分校CSE 104, 204计算复杂性2020年秋季,2022年春季,由Seshadhri Comandur主讲
- 加州大学圣克鲁兹分校CSE 290A随机算法2020年春季,由Seshadhri Comandur主讲
三、系统编程
- 15-213计算机系统导论,2015年秋季 - CMU
- 计算机系统:程序员视角
- CS361 - 计算机系统 - UIC
- CS 3650 - 计算机系统 - 2020年秋季 - Nat Tuck - NEU (课程视频 - YouTube)
- CS 4400 – 计算机系统 2016年秋季 - 犹他大学
- 系统课程 - Aduni
- CS110: 计算机系统原理 - 斯坦福大学
- 6.172软件系统性能工程 - 麻省理工学院开放式课程
- 计算机系统性能评估 - 印度理工学院马德拉斯分校
- 存储系统 - 印度科学学院班加罗尔分校
- MAP6264 - 排队论 - FAU(视频课程)
- EE 380计算机系统研讨会 - 斯坦福大学 (课程视频)
3.1 操作系统
- ECS 150:操作系统与系统编程 - 2020年秋季 - Joël Porquet-Lupine - 加州大学戴维斯分校
- CS124操作系统 - 加州理工学院,2018年秋季 - Youtube
- CS 162操作系统与系统编程,2015年春季 - 加州大学伯克利分校
- CS 4414 - 操作系统,弗吉尼亚大学(rust-class)
- CS 4414操作系统,2018年秋季 - 弗吉尼亚大学
- CSE 421/521 - 操作系统导论,纽约州立大学布法罗分校,2016年春季 (课程视频 - YouTube) (2016年复习课) (作业讲解)
- CS 377 - 操作系统,2016年秋季 - Umass OS
- CS 577 - 操作系统,2020年春季 - Umass OS
- 6.828 - 操作系统工程 [2014年秋季]
- 6.S081 - 操作系统工程 [2020年秋季]
- CSE 30341 - 操作系统,2008年春季
- CSEP 551操作系统,2014年秋季 - 华盛顿大学
- 操作系统导论 - 印度理工学院马德拉斯分校
- CS194高级操作系统结构与实现,2013年春季 - InfoCoBuild,加州大学伯克利分校
- CSE 60641 - 研究生操作系统,2008年秋季
- UNIX环境高级编程
3.2 分布式系统
- CS 677 - 分布式操作系统,2024年春季 - Umass OS
- CS 436 - 分布式计算机系统 - 滑铁卢大学
- 6.824 - 分布式系统,2015年春季 - 麻省理工学院
- 6.824分布式系统 - 2020年春季 - 麻省理工学院 (Youtube)
- 分布式系统讲座系列
- 分布式算法
- CSEP 552 - PMP分布式系统,2013年春季 - 华盛顿大学 (视频)
- CSE 490H - 可扩展系统:大规模集群的设计、实现与应用,2008年秋季 - 华盛顿大学 (视频)
- MOOC - 云计算概念 - 伊利诺伊大学厄巴纳-香槟分校
- 分布式系统(Pallab Dasgupta教授)
- EdX KTHx ID2203可靠分布式算法
- 分布式数据管理 - 德国布伦瑞克工业大学
- 信息检索与网络搜索引擎 - 德国布伦瑞克工业大学
- 中间件与分布式系统(2009/10冬季学期) - Martin von Löwis博士 - HPI
- CSE 138 - 分布式系统 - 加州大学圣克鲁兹分校,2020年春季 (2021)
- 卡内基梅隆大学15 440 / 640分布式系统,2022年春季,由Mahadev Satyanarayanan、Padmanabhan Pillai主讲
- 北卡罗来纳大学Comp533 - 分布式系统,2020年春季
- 布朗大学CSCI 1380分布式计算机系统,2016年春季,由Tom Doeppner & Rodrigo Fonseca主讲
3.3 实时系统
四、数据库系统
- CMPSC 431W数据库管理系统,2015年秋季 - 宾州州立大学 课程视频 - YouTube
- CS121 - 关系数据库系统导论,2016年秋季 - 加州理工学院
- CS 5530 - 数据库系统,2016年春季 - 犹他大学
- 分布式数据管理(2018/19冬季学期) - 波茨坦大学HPI
- MOOC - 斯坦福数据库课程
- CSEP 544数据库管理系统,2015年秋季 - 华盛顿大学
- 数据库设计 - 印度理工学院马德拉斯分校
- 数据库系统基础 - 印度理工学院坎普尔分校
- 数据库管理原理,Bart Baesens
- FIT9003数据库系统设计 - 莫纳什大学
- 15-445 - 数据库系统导论,卡内基梅隆大学 (YouTube-2017, YouTube-2018, YouTube-2019, YouTube-2021, YouTube-2022)
- 15-721 - 数据库系统,卡内基梅隆大学 (YouTube-2017, YouTube-2016)
- 15-721高级数据库系统(2019年春季) - 卡内基梅隆大学
- CS122 - 关系数据库系统实现,2014-2015年冬季 - 加州理工学院
- CS 186 - 数据库系统,加州大学伯克利分校,2015年春季
- CS 6530 - 研究生数据库系统,2016年秋季,犹他大学 (课程视频 - YouTube)
- 6.830/6.814 - 数据库系统 [2014年秋季]
- 信息学1 - 数据与分析2014/15 - 爱丁堡大学
- 数据库管理系统,Aduni
- D4M - 数据库信号处理
- 内存数据管理(2013年)Hasso Plattner教授 - HPI
- 分布式数据管理(2019/20冬季学期) - Thorsten Papenbrock博士 - HPI
- CS122d - NoSQL数据管理(2021年春季) - Mike Carey教授 - 加州大学尔湾分校
五、软件工程
5.1 面向对象设计
- ECE 462 使用C++和Java的面向对象编程 - 普渡大学
- 面向对象程序设计与软件工程 - Aduni
- OOSE - 面向对象软件工程,Tim Lethbridge博士
- 面向对象系统分析与设计(变化世界中的系统分析与设计)
- CS 251 - 中级软件设计(C++版) - 范德堡大学
- OOSE - 使用UML和Java的软件开发
- 面向对象分析与设计 - 印度理工学院卡拉格普尔分校
- CS3 - 计算设计 - Richard Buckland 新南威尔士大学
- 信息学1 - 面向对象编程2014/15 - 爱丁堡大学
- 面向对象组件与软件设计2015/16 - 爱丁堡大学
5.2 软件工程
- 计算机科学169-软件工程 - 2015年春季 - 加州大学伯克利分校
- 计算机科学169-软件工程 - 2019年秋季 - 加州大学伯克利分校
- CS 5150 - 软件工程,2014年秋季 - 康奈尔大学
- 服务设计与工程导论 - 意大利特伦托大学
- CS 164软件工程 - 哈佛大学
- 系统分析与设计 - 印度科学学院班加罗尔分校
- 软件工程 - 印度理工学院孟买分校
- 可信系统(2014年夏季学期)- 波茨坦大学HPI
- 软件测试 - 印度理工学院卡拉格普尔分校
- 软件测试 - Udacity,课程cs258 | 2015
- 软件调试 - Udacity,课程cs259 | 2015
- 软件工程 - 包豪斯-魏玛大学
- 卡内基梅隆大学17-445人工智能系统软件工程2020年夏季,由Christian Kaestner主讲
5.3 软件架构
5.4 并发
- CS176 - 多处理器同步 - 布朗大学 (2012年视频)
- CS 282 (2014): Android中的并发Java网络编程
- CSE P 506 – 并发编程,2011年春季 - 华盛顿大学 (视频)
- CSEP 524 - 并行计算 - 华盛顿大学 (视频)
- 并行编程概念(2013/14冬季学期) - 波茨坦大学HPI
- 并行编程概念(2012/13冬季学期) - 波茨坦大学HPI
- UIUC ECE 408 / CS 408 应用并行编程2018年春季、2022年秋季,由Wen-mei Hwu、Sanjay Patel主讲
- UIUC ECE 508 / CS 508 众核并行算法2019年春季,由Wen-mei Hwu主讲
- UIUC CS 420 / ECE 492 / CSE 402 科学家与工程师并行编程导论2015年秋季,由Sanjay Kale主讲
- 斯坦福CME 213 使用MPI、OpenMP和CUDA的并行计算导论2020年冬季,由Eric Darve主讲
5.5 移动应用开发
- MOOC 安卓手持系统移动应用开发 - 马里兰大学
- CS 193p - iOS应用开发,斯坦福大学
- CS S-76 移动应用开发 - 哈佛大学
- CS 251 (2015): 中级软件设计
- Android应用开发入门教程 - thenewboston
- Android应用开发教程 - thenewboston
- MOOC - 开发Android应用 - Udacity
- MOOC - 高级Android应用开发 - Udacity
- CSSE490 Android开发2010-2011年冬季,Rose-Hulman,Dave Fisher
- iOS课程,Dave Fisher
- 可视化与洞察的iPad应用开发 - 卡内基梅隆大学
- 移动计算 - 印度理工学院马德拉斯分校
- 移动信息系统 - 包豪斯-魏玛大学
六、人工智能
- CS50 - Python人工智能(机器学习)导论,哈佛大学开放式课程
- CS 188 - 人工智能导论,加州大学伯克利分校 - 2023年春季
- 6.034人工智能,麻省理工学院开放式课程
- CS221: 人工智能原理与技术 - 2019年秋季 - 斯坦福大学
- 15-780 - 研究生人工智能,2014年春季,卡内基梅隆大学
- CSE 592人工智能应用,2003年冬季 - 华盛顿大学
- CS322 - 人工智能导论,2012-2013年冬季 - 英属哥伦比亚大学 (YouTube)
- CS 4804: 人工智能导论,2016年秋季
- CS 5804: 人工智能导论,2015年春季
- 人工智能 - 印度理工学院卡拉格普尔分校
- 人工智能 - 印度理工学院马德拉斯分校
- 人工智能(P.Dasgupta教授) - 印度理工学院卡拉格普尔分校
- MOOC - 人工智能导论 - Udacity
- MOOC - 机器人人工智能 - Udacity
- 研究生人工智能课程,2012年秋季 - 华盛顿大学
- 基于代理的系统2015/16 - 爱丁堡大学
- 信息学2D - 推理与代理2014/15 - 爱丁堡大学
- 人工智能 - Ravensburg-Weingarten应用技术大学
- 演绎数据库与知识系统 - 德国布伦瑞克工业大学
- 人工智能:知识表示与推理 - 印度理工学院马德拉斯分校
- 语义Web技术,Harald Sack博士 - HPI
- 语义Web技术知识工程,Harald Sack博士 - HPI
- T81-558: 深度神经网络应用2022年,Jeff Heaton,圣路易斯华盛顿大学
- MSU人工智能编程
七、机器学习
7.1 机器学习入门
- 编码人员机器学习导论
- MOOC - 统计学习,斯坦福大学
- Python统计学习 - 斯坦福在线
- 机器学习基础训练营,伯克利西蒙斯研究所
- CS 155 - 机器学习与数据挖掘,2023 - 加州理工学院 (2020年笔记) (2020年YouTube) (2019年笔记) (2019年YouTube) (2018年笔记) (2018年YouTube) (2017年笔记) (2017年YouTube) (2016年笔记) (2016年YouTube)
- CS 156 - 数据学习,加州理工学院
- 10-601 - 机器学习导论(硕士) - Tom Mitchell - 2015,卡内基梅隆大学 (YouTube)
- 10-601机器学习 | CMU | 2017年秋季
- 10-701 - 机器学习导论(博士) - Tom Mitchell,2011年春季,卡内基梅隆大学 (2014年秋季) (2015年春季由Alex Smola主讲) (2020年秋季由Ziv Bar-Joseph, Eric Xing主讲)
- 10 - 301/601 - 机器学习导论 - 2023年秋季 - CMU
- 6.036 - 机器学习,Broderick - MIT 2020年秋季
- 2023年地中海机器学习暑期学校
- 应用机器学习(康奈尔科技CS 5787,2020年秋季)
- 斯坦福CS229: 机器学习课程 | 2019年夏季(Anand Avati) (2022年春季)
- CMS 165机器学习基础 - 2019 - 加州理工学院 (Youtube)
- CMS 165机器学习与统计推断基础 - 2020 - 加州理工学院
- 微软研究院 - 机器学习课程
- CS 446 - 机器学习,2016年秋季,UIUC
- 2012年UBC本科机器学习课程,Nando de Freitas
- CS 229 - 机器学习 - 斯坦福大学 (2018年秋季)
- CS 189/289A机器学习导论,Jonathan Shewchuk教授 - UCBerkeley
- CPSC 340: 机器学习与数据挖掘(2018) - UBC
- CS4780/5780机器学习,2013年秋季 - 康奈尔大学
- CS4780/5780机器学习,2018年秋季 - 康奈尔大学 (Youtube)
- CSE474/574机器学习导论 - 纽约州立大学布法罗分校
- CS 5350/6350 - 机器学习,2024年春季,犹他大学 (Youtube)
- ECE 5984机器学习导论,2015年春季 - 弗吉尼亚理工大学
- CSx824/ECEx242机器学习,Bert Huang,2015年秋季 - 弗吉尼亚理工大学
- STA 4273H - 大规模机器学习,2015年冬季 - 多伦多大学
- CS 480/680机器学习导论,Gautam Kamath,滑铁卢大学 (2021年春季)
- CS 480/680机器学习导论,Kathryn Simone,滑铁卢大学 (2024年秋季)
- CS 485/685机器学习,Shai Ben-David,滑铁卢大学
- STAT 441/841分类学2017年冬季,滑铁卢
- 10-605 - 大规模数据集机器学习,2016年秋季 - CMU
- 信息论、模式识别与神经网络 - 剑桥大学
- Python与机器学习 - 斯坦福大众课程计划
- MOOC - 机器学习第1a部分 - Udacity/佐治亚理工 (第1b部分 第2部分 第3部分)
- 模式识别课程(2012)- 海德堡大学
- 机器学习与模式识别导论 - CBCSL OSU
- 机器学习导论 - 印度理工学院卡拉格普尔分校
- 机器学习导论 - 印度理工学院马德拉斯分校
- 模式识别 - 印度科学学院班加罗尔分校
- 模式识别与应用 - 印度理工学院卡拉格普尔分校
- 模式识别 - 印度理工学院马德拉斯分校
- 2013年马克斯·普朗克智能系统研究所机器学习暑期学校
- 机器学习 - Kogan教授(2016年春季) - 罗格斯大学
- CS273a: 机器学习导论 (YouTube)
- 2015年机器学习速成课程
- COM4509/COM6509机器学习与自适应智能2015-16
- 机器学习导论 - 2018年春季 - 苏黎世联邦理工学院
- 机器学习 - Pedro Domingos - 华盛顿大学
- 机器学习(COMP09012)
- 2020年概率机器学习 - 图宾根大学
- 2020年统计机器学习 - Ulrike von Luxburg - 图宾根大学
- COMS W4995 - 应用机器学习 - 2020年春季 - 哥伦比亚大学
- 2022年工程师机器学习 (YouTube)
- 10-418 / 10-618 (2019年秋季) 结构化数据机器学习
- ORIE 4741/5741: 复杂大数据学习 - 康奈尔
- 物联网中的机器学习
- 斯坦福CS229M: 机器学习理论 - 2021年秋季
- 机器学习与统计模式分类导论 - Sebastian Raschka教授
- CMU多模态机器学习课程(11-777),2020年秋季
- EE104: 机器学习导论 - 斯坦福大学
- CPSC 330: 应用机器学习(2020) - UBC
- 2013年机器学习 - Nando de Freitas,UBC
- 2014-2015年机器学习,牛津大学
- 10-702/36-702 - 统计机器学习 - Larry Wasserman,2016年春季,CMU (2015年春季)
- 10-715高级机器学习导论 - CMU (YouTube)
- CS 281B - 可扩展机器学习,Alex Smola,加州大学伯克利分校
- 100天机器学习 - CampusX(印地语)
- 2022-23年CampusX数据科学导师计划(印地语)
- 统计机器学习 - S2023 - Benyamin Ghojogh
- MIT 6.5940 EfficientML.ai课程,2023年秋季
- TinyML - 宾夕法尼亚大学微型机器学习
- 康奈尔大学2022年秋季ECE 4760(微控制器数字系统设计)
- MIT 6.5940 EfficientML.ai课程,2023年秋季
- SFU CMPT 727统计机器学习2022、2023年春季,Maxwell Libbrecht主讲
- 加州大学伯克利分校CS 189 / 289A机器学习导论2023年秋季,Jennifer Listgarten & Jitendra Malik主讲
- 加州大学伯克利分校CS 189机器学习导论(CDSS课程)2022年春季,Marvin Zhang主讲
- MIT 6.036机器学习导论2019年春季,Leslie Kaelbling主讲
- 慕尼黑大学机器学习导论
- 加州大学洛杉矶分校Stats C161/C261模式识别与机器学习导论2024年冬季,Arash Amini主讲 (2023年冬季)
- 加州大学洛杉矶分校Stats 231C机器学习理论2022年春季,Arash Amini主讲
- MSU机器学习
- 动力系统数据科学,Oliver Wallscheid & Sebastian Peitz主讲
- 2021年剑桥统计学习实践,Alberto J. Coca主讲
- 数据8: 数据科学基础 - 加州大学伯克利分校 (2017年夏季)
- 数据144: 数据科学基础2021年春季 - 瓦萨学院 (课程材料)
- CSE519 - 数据科学2016年秋季 - Skiena,SBU
- CS 109数据科学,哈佛大学 (YouTube)
- 6.0002计算思维与数据科学导论 - MIT OCW
- 数据100: 数据科学原理与技术 - 加州大学伯克利分校 (2024年秋季) (2019年夏季)
- 数据102 - 2021年春季 - 加州大学伯克利分校 (YouTube)
- 分布式数据分析(2017/18冬季学期) - 波茨坦大学HPI
- 数据剖析与清洗(2014/15冬季学期) - 波茨坦大学HPI
- CS 229r - 大数据算法,哈佛大学 (Youtube)
- 大数据算法 - 印度理工学院马德拉斯分校
- Python数据科学与TCLab (YouTube)
7.2 数据挖掘
- CSEP 546 数据挖掘 - Pedro Domingos,2016年春季 - 华盛顿大学 (YouTube)
- CS 5140/6140 - 数据挖掘,2020年春季,犹他大学Jeff Phillips教授 (Youtube)
- CS 5140/6140 - 数据挖掘,2023年春季,犹他大学Ana Marasović教授 (Youtube)
- CS 5955/6955 - 数据挖掘,犹他大学 (YouTube)
- 统计学202 - 数据挖掘统计方法,2007年夏季 - Google (YouTube)
- MOOC - 文本挖掘与分析,翟成祥
- 信息检索2014年夏季学期,iTunes - HPI
- MOOC - Weka数据挖掘
- CS 290数据挖掘课程
- CS246 - 大规模数据集挖掘,2016年冬季,斯坦福大学 (YouTube)
- 信息检索 - 2018年春季 - 苏黎世联邦理工学院
- CAP6673 - 数据挖掘与机器学习 - FAU(视频课程)
- CS 412 - 数据挖掘导论 - UIUC
7.3 概率图形建模
7.4 深度学习
- 全栈深度学习 - 2022年课程
- 全栈深度学习 - 2021年课程
- 纽约大学深度学习2020年春季
- 纽约大学深度学习2021年春季
- 6.S191: 深度学习导论 - MIT
- 深度学习与生成模型导论课程 - Sebastian Raschka教授
- CMU深度学习
- CS231n计算机视觉深度学习 - 2016年冬季Andrej Karpathy - 斯坦福大学
- 深度学习: CS 182 2021年春季
- 10-414/714: 深度学习系统 - CMU (Youtube)
- 11-785: 深度学习导论 - CMU (2024年课程视频 - YouTube, 2024年课程复习 - YouTube)
- 第一部分: 编码人员实用深度学习,v3 - fast.ai
- 第二部分: 深度学习基础 - fast.ai
- 2015年牛津大学深度学习 - Nando de Freitas
- 自动驾驶汽车 — Andreas Geiger,2021/22 (YouTube)
- 6.S094: 自动驾驶汽车深度学习 - MIT
- CS294-129设计、可视化与理解深度神经网络 (YouTube)
- CS230: 深度学习 - 2018年秋季 - 斯坦福大学
- STAT-157深度学习2019 - 加州大学伯克利分校
- 深度学习,斯坦福大学
- MOOC - 机器学习神经网络,Geoffrey Hinton 2016 - Coursera
- 深度无监督学习 – 伯克利2020年春季
- Stat 946深度学习 - 滑铁卢大学
- EECS 298计算神经网络与机器学习理论(2020年秋季) - 加州大学欧文分校 (YouTube)
- 神经网络课程 - 舍布鲁克大学 (YouTube)
- CS294-158深度无监督学习SP19
- DLCV - 计算机视觉深度学习 - UPC巴塞罗那
- DLAI - 人工智能深度学习 @ UPC巴塞罗那
- 神经网络与应用 - 印度理工学院卡拉格普尔分校
- UVA深度学习课程
- 深度学习 - 2020-21年冬季 - 图宾根机器学习
- 几何深度学习 - AMMI
- 深度学习数学 — Andreas Geiger
- 应用深度学习2022 - 维也纳工业大学
- 神经网络:从零到专家 - Andrej Karpathy
- CIS 522 - 深度学习 - 宾夕法尼亚大学
- UVA深度学习课程
- 深度学习(2020年秋季) - 佐治亚理工学院
- CS7015 - 深度学习 - Mitesh M. Khapra教授 - 印度理工学院马德拉斯分校
- 苏黎世联邦理工学院 | 科学计算中的深度学习2023
- CS294深度无监督学习2024年春季
- 应用深度学习Maziar Raissi
- 加州大学伯克利分校CS 182 / 282a深度学习2023年春季,Anant Sahai主讲
- 深度学习基础 - UMD
- TUM IN2346深度学习导论2024年秋季,Daniel Cremers主讲
7.5 强化学习
- CS234: 强化学习 - 2024年春季 - 斯坦福大学 (2019年冬季)
- 强化学习导论 - UCL
- 强化学习 - 印度理工学院马德拉斯分校
- CS885强化学习 - 2018年春季 - 滑铁卢大学
- CS 285 - 深度强化学习 - 加州大学伯克利分校
- CS 294 112 - 强化学习
- NUS CS 6101 - 深度强化学习
- ECE 8851: 强化学习
- CS294-112, 深度强化学习Sp17 (YouTube)
- UCL 2015年强化学习课程,DeepMind David Silver主讲 (YouTube)
- 深度强化学习训练营 - 伯克利2017年8月
- 强化学习 - 印度理工学院马德拉斯分校
- KTH强化学习课程 (FDD3359 - 2022)
- 亚利桑那州立大学强化学习课程,2022年春季
- CS 4789/5789: 强化学习导论 - 康奈尔
- S20/IE613 - 在线(机器)学习/ 老虎机算法
- 强化学习 - 2021年秋季chandar-lab
- CMU 10 703深度强化学习与控制2022年秋季,Katerina Fragkiadaki主讲
- 普林斯顿大学ECE524强化学习基础,2024年春季
- 强化学习与最优控制 - Dimitri P. Bertsekas, ASU
- CMU 16 745最优控制与强化学习春季课程,Zac Manchester主讲
- CMU 16 899自适应控制与强化学习2020年秋季,Changliu Liu主讲
7.6 高级机器学习
- 高级机器学习,2021-2022学年第一学期 - CMI Madhavan Mukund教授
- 18.409机器学习算法,2015年春季 - MIT
- CS 330 - 深度多任务与元学习 - 2019年秋季 - 斯坦福大学 (Youtube)
- 斯坦福CS330: 深度多任务与元学习I 2022年秋季
- ES 661 (2023): 概率机器学习 - 印度理工学院甘地讷格尔分校
- 高维数据信息检索
- 可信机器学习 - 2023-2024冬季学期,图宾根大学
- 可信机器学习 - 2024-2025冬季学期,图宾根大学
- 苏黎世联邦理工学院高级机器学习2019年秋季,Joachim M. Buhmann主讲
- CS 159机器学习高级专题,2021年春季 - 加州理工学院
7.7 自然语言处理
- CS 224N - 深度自然语言处理 - 斯坦福大学 (2019年冬季课程视频) (2021年冬季课程视频) (2024年春季课程视频)
- CS 224N - 自然语言处理,斯坦福大学 (课程视频)
- 斯坦福XCS224U: 自然语言理解I 2023年春季
- CS388: 自然语言处理 - 德克萨斯大学奥斯汀分校
- CS 124 - 从语言到信息 - 斯坦福大学
- CS 6340/5340 - 自然语言处理 - 犹他大学 - 2024年春季 (Youtube)
- 神经网络:从零到专家 - Andrej Karpathy
- fast.ai自然语言处理代码入门 (Github)
- MOOC - 自然语言处理 - Coursera, 密歇根大学
- 德克萨斯大学奥斯汀分校自然语言处理(Greg Durrett)
- CS224U: 自然语言理解 - 2019年春季 - 斯坦福大学
- 2017年牛津大学深度自然语言处理
- 自然语言处理 - 印度理工学院孟买分校
- CMU高级自然语言处理2024年秋季 (2024年秋季课程视频) (2021年秋季课程视频)
- CMU自然语言处理神经网络2021
- 自然语言处理 - Michael Collins - 哥伦比亚大学
- CMU CS11-737 - 多语言自然语言处理
- 马萨诸塞大学CS685: 高级自然语言处理(2022年春季)
- 自然语言处理(CMSC 470)
- 斯坦福CS25 - 2023年Transformer大联合
- 自然语言处理(IN2361) - TUM
- 滑铁卢大学CS 886: 基础模型最新进展2024年冬季
- 加州大学伯克利分校CS 194/294-196大型语言模型智能体2024年秋季,Dawn Song & Xinyun Chen主讲 (YouTube播放列表)
- 加州大学伯克利分校CS 194/294-267理解大型语言模型基础与安全2024年春季,Dawn Song & Dan Hendrycks主讲
- 大型语言模型导论(LLMs),印度理工学院德里分校
- 自然语言处理(2024年春季) - 犹他大学
7.8 生成式人工智能
7.9 计算机视觉
- CS 231n - 卷积神经网络视觉识别,斯坦福大学
- CS 198-126: 现代计算机视觉2022年秋季(加州大学伯克利分校)
- 机器人与计算机视觉机器学习,2013/2014冬季学期 - 慕尼黑工业大学 (YouTube)
- 信息学1 - 认知科学2015/16 - 爱丁堡大学
- 信息学2A - 形式语言与自然语言处理2016-17 - 爱丁堡大学
- NOC:视觉计算深度学习 - 印度理工学院卡拉格普尔分校
- 极端分类
- EECS 498/598 - 计算机视觉深度学习 - 密歇根大学 - 2019年秋季 (Youtube)
- CAP5415计算机视觉 - UCF 2023年秋季
- CAP6412高级计算机视觉 - UCF 2024年春季 (Youtube)
- 计算机视觉高级深度学习 (ADL4CV) (IN2364) - 慕尼黑工业大学 (Youtube)
- 计算机视觉III: 检测、分割与跟踪 (CV3DST) (IN2375) - 慕尼黑工业大学
7.10 时间序列分析
7.11 优化
- 机器学习优化:理论与实现(印地语) - IIT
- 罗切斯特DSCC 435机器学习优化2023年秋季,Jiaming Liang主讲
- 普林斯顿ELE539/COS512机器学习优化2021年春季,Chi Jin主讲
- EE364a: 凸优化I - 斯坦福大学
- 10-725凸优化,2015年春季 - CMU
- 10-725凸优化: 2016年秋季 - CMU
- 10-725优化2012年秋季 - CMU
- 10-801高级优化与随机方法 - CMU (YouTube)
- AM 207 - 数据分析、推理与优化的随机方法,哈佛大学
- MIT 6.S098应用凸优化2022年IAP,Alexandre Amice, Benoit Legat主讲 (YouTube)
- 特温特大学离散优化,Marc Uetz主讲 (2020年秋季)
- 加州大学圣地亚哥分校CS292F凸优化2020年春季,王宇翔主讲 (Youtube)
- 威斯康星大学麦迪逊分校CS/ECE/ISyE 524优化导论2017-18年春季,Laurent Lessard主讲
- 威斯康星大学麦迪逊分校ISyE/Math/CS/Stat 525线性优化2021年秋季,Alberto Del Pia主讲
- 威斯康星大学麦迪逊分校ISyE/Math/CS 728整数优化(课程第二部分)2020年春季
7.12 其他机器学习主题
- 量子机器学习 | 2021年Qiskit全球暑期学校
- CS 6955 - 聚类,2015年春季,犹他大学
- Info 290 - 用Twitter分析大数据,加州大学伯克利分校信息学院 (YouTube)
- CS224W图机器学习 | 2021年春季 | 斯坦福大学
- 9.520 - 统计学习理论与应用,2015年秋季 - MIT
- 圣保罗大学ICMC统计学习理论课程
- 强化学习 - UCL
- 机器学习正则化方法2016 (YouTube)
- 大数据统计推断 - 多伦多大学
- 强化学习 - 印度理工学院马德拉斯分校
- 统计再思考2015年冬季 - Richard McElreath
- 机器学习基础 - Blmmoberg Edu
- 强化学习导论 - UCL
- 强化学习统计基础 - 加州大学圣地亚哥分校,王宇翔主讲,2021年春季 (Youtube)
- 网络信息检索(L. Becchetti - A. Vitaletti教授)
- 大数据系统(2019/20冬季学期) - Tilmann Rabl教授 - HPI
- 分布式数据分析(2017/18冬季学期) - Thorsten Papenbrock博士 - HPI
- 数据中心AI导论 - MIT
- 并行计算与科学机器学习
- 机器学习系统设计 - 系统设计格斗俱乐部
- 德克萨斯大学奥斯汀分校ECE 381V老虎机与在线学习2021年秋季,Sanjay Shakkottai主讲
- 加州大学圣地亚哥分校MATH 273B信息几何及其应用2022年冬季,Melvin Leok主讲
- 康奈尔ECE 5545机器学习硬件与系统2022年春季,Mohamed Abdelfattah主讲
- 高维分析:随机矩阵与机器学习,Roland Speicher主讲(Youtube)
- ACP 2023年约束编程机器学习暑期学校
- EE512A - 图模型高级推断,2014年秋季学期
- UIUC STAT 437无监督学习2024年春季,Tori Ellison主讲
- 约翰霍普金斯无监督学习2017年春季,Rene Vidal主讲
- 威斯康星大学麦迪逊分校CS/ECE 561 - 机器学习中的概率与信息论2020年秋季,Matthew Malley主讲
- 马里兰大学CMSC828U机器学习算法:保证与分析2020年秋季,Furong Huang主讲 (YouTube播放列表)
- 机器学习统计物理
- 11-755 - 信号处理机器学习,CMU (2024年YouTube, 2023年YouTube)
八、计算机网络
- CS 144 计算机网络导论 - 斯坦福大学,2013年秋季 (课程视频)
- 计算机网络:自顶向下方法
- 计算机通信网络,伦斯勒理工学院 - 2001年秋季 (视频) (幻灯片)
- Raj Jain教授课程录音与播客 - 圣路易斯华盛顿大学 (YouTube)
- 计算机网络,Tanenbaum, Wetherall计算机网络第五版 - 视频课程
- CSEP 561 - PMP网络系统,2013年秋季 - 华盛顿大学 (视频)
- CSEP 561 – 网络系统,2008年秋季 - 华盛顿大学 (视频)
- 计算机网络 - 印度理工学院卡拉格普尔分校
- 数据通信导论2013,Steven Gordon - 泰国国立法政大学
- 复杂网络导论 - RIT
- 网络结构分析与可视化
- 数据通信 - 印度理工学院卡拉格普尔分校
- 纠错码 - 印度科学学院班加罗尔分校
- 信息论与编码 - 印度理工学院孟买分校
- 复杂网络:理论与应用 - 印度理工学院卡拉格普尔分校
- 高级3G与4G无线移动通信 - 印度理工学院坎普尔分校
- 宽带网络:概念与技术 - 印度理工学院孟买分校
- 编码理论 - 印度理工学院马德拉斯分校
- 数字通信 - 印度理工学院孟买分校
- 数字语音与图像通信 - 印度理工学院卡拉格普尔分校
- 无线自组织与传感器网络 - 印度理工学院卡拉格普尔分校
- TCP/IP网络互联,Christoph Meinel教授 - HPI
- CS798: 计算机网络数学基础 - 滑铁卢大学
九、计算数学
-
微积分
-
离散数学
-
概率与统计
-
线性代数
十、网络编程与互联网技术
- CS50的Python与JavaScript Web编程
- Web设计课程 - HTML/CSS/JavaScript - 加州大学伯克利分校
- CS 75动态网站构建 - 哈佛大学
- 互联网技术 - 印度理工学院卡拉格普尔分校
- 现代应用开发导论 - 印度理工学院马德拉斯分校
- CSE 199 - 互联网工作原理,2016年秋季 - 布法罗大学
- 开源选修课:数据库与Rails - Ruby on Rails入门 - 德克萨斯大学 (Youtube课程)
- CSEP545 - 电子商务事务处理,2012年冬季 - 华盛顿大学 (视频)
- CT 310 Web开发 - 科罗拉多州立大学
- 互联网技术与应用2012,Steven Gordon - 泰国国立法政大学
- CSCI 3110 Web开发高级主题,2011年秋季 - ETSU iTunes
- CSCI 5710电子商务实现,2015年秋季 - ETSU iTunes
- MOOC - Web开发 - Udacity
- Web技术 - Christoph Meinel教授 - HPI
十一、计算机科学理论与编程语言
- MOOC - 编译器 - 斯坦福大学
- CS 6120: 高级编译器 在线自学指导课程 - 康奈尔大学
- CS 164 Hack your language,加州大学伯克利分校 (Lectures - Youtube)
- 计算理论 - Shai Simonson
- 布朗大学 CS 173 编程语言 (Book)
- CMU 2020 年计算机科学理论工具包
- CS 421 - 编程语言和编译器,UIUC
- CSC 253 - CPython 内部: 罗切斯特大学,Python 解释器源代码的十小时代码漫步
- CSE341 - 编程语言,Dan Grossman,2013 年春 - 华盛顿大学
- CSEP 501 - 编译器构建,华盛顿大学 (课程 - Youtube)
- CSEP 505 编程语言,2015 年冬季 - 华盛顿大学
- DMFP - 离散数学与函数式编程,惠顿学院
- CS 374 - 算法与计算模型(2014 年秋季),UIUC (Lecture videos)
- 6.045 自动机、可计算性和复杂性,麻省理工学院 (Lecture Videos)
- MOOC - Automata - Jeffrey Ullman - Coursera
- CS581 计算理论 - 波特兰州立大学 (Lectures - Youtube)
- 计算理论 - 2011 年秋季 加州大学戴维斯分校
- TDA555 函数编程入门 - 查尔姆斯理工大学 (Lectures - YouTube)
- Ryan O’Donnell 理论计算机科学讲座
- Philip Wadler Haskell 演讲录音
- 函数式编程(2021 年) - 诺丁汉大学
- 函数式编程 - 爱丁堡大学 - 2016-17
- MOOC - Martin Odersky 的《Scala 中的函数式编程原理
- CS294 - 面向所有人的程序合成
- MOOC - Scala 的反应式编程原理 - Coursera
- 程序员的范畴理论,2014 年 - Bartosz Milewski (YouTube)
- 俄勒冈编程语言暑期班(证明理论、类型理论、范畴理论、验证)
- Inf1 - 2015 年计算与逻辑 - 爱丁堡大学
- 信息学 1 - 功能编程 - 爱丁堡大学 (Videos)
- 编译器设计 - IISC 班加罗尔
- 编译器设计 - 坎普尔印度理工学院
- 编程语言原理 - 德里印度理工学院
- 编译器设计原理 - IISC Bangalore
- Haskell 中的函数式编程 - 马德拉斯印度理工学院
- 计算理论 - 坎普尔印度理工学院
- 自动机理论、形式语言和计算 - 马德拉斯印度理工学院
- 计算理论 - 坎普尔印度理工学院
- CS 逻辑 - 德里印度理工学院
- 编译器设计原理 - 斯沃斯莫尔学院
- CMU 复杂性理论本科课程
- CMU 复杂性理论研究生课程
- CMU 理论计算机科学的伟大构想
- Another link
- CMU 的布尔函数分析
- 理论计算机科学(衔接课程)(教程) - SS 2015
- 语言与翻译 - 鲁汶大学 LINFO2132
- Sorav Bansal 的编译器设计
- OCaml 编程 正确 + 高效 + 美观
- 哥伦比亚大学 IEOR E4004 运筹学导论: 2005 年夏季,确定性模型,由 Jay Sethuraman 主讲
- 哥伦比亚大学 IEOR E4106 运筹学导论: 随机模型 2005 年春,Ward Whitt 主讲
- 哥伦比亚大学 ELEN E6711 信息系统中的随机模型 2005 年秋,Yuliy Barsyhnikov 著
- 哥伦比亚大学 ELEN E6717 信息论 2003 年秋,作者:Vittorio Castelli
- CMU 21 738 极端组合学 2020 年春,Po-Shen Loh 主讲
- JHU 特定领域语言(DSL)班(2018 年夏季)
十二、嵌入式系统
- EE319K嵌入式系统 - 德克萨斯大学奥斯汀分校
- EE445L嵌入式系统设计实验室,2015年秋季,德克萨斯大学
- CS149嵌入式系统导论 - 2011年春季 - 加州大学伯克利分校
- ECE 4760微控制器设计,2016年秋季,康奈尔大学 (Youtube课程)
- ECE 5760 - 高级微控制器设计与片上系统,2016年春季 - 康奈尔大学
- 物联网 - Dietmar P. F. Möller教授
- CSE 351 - 硬件/软件接口,2016年春季 - 华盛顿大学 (Coursera)
- ECE 5030 - 电子生物仪器,2014年春季 - 康奈尔大学
- ECE/CS 5780/6780 - 嵌入式系统设计,2014年春季 - 犹他大学
- 嵌入式系统课程 - 版本1 - 2011 - 北卡罗来纳大学夏洛特分校
- 基于瑞萨RX63N处理器的嵌入式系统 - 版本3 - 北卡罗来纳大学夏洛特分校
- 嵌入式系统软件工程(2011/12冬季学期) - HPI波茨坦大学
- 嵌入式软件测试 - 印度理工学院马德拉斯分校
- 嵌入式系统 - 印度理工学院德里分校
- 嵌入式系统设计 - 印度理工学院卡拉格普尔分校
- 基于ARM的开发 - 印度理工学院马德拉斯分校
- 自适应系统软件工程 - iTunes - HPI波茨坦大学
- EE260嵌入式系统 - Robert Paz
- 物联网暑期学校
- ECSE 421 - 嵌入式系统 - 麦吉尔大学
- NOC: 高级物联网应用 - 印度科学学院班加罗尔分校
- NOC: 物联网设计 - 印度科学学院班加罗尔分校
十三、实时系统评估
- 计算机系统性能评估 - 印度理工学院马德拉斯分校
- 实时系统 - 印度理工学院卡拉格普尔分校
- EE 380计算机系统研讨会 - 斯坦福大学
- 系统存储 - 印度科学学院班加罗尔分校
- 高性能计算 - 印度科学学院班加罗尔分校
- 2023高性能计算课程 - Morris Riedel教授 (2022年课程)
- 高性能计算 | Udacity
- UCLA Stats 205分层线性模型2024年春季,Jingyi Jessica Li主讲
- UF EML 6934最优控制2012年春季,Anil V. Rao主讲
十四、计算机组织与结构
-
计算机组成
-
计算机体系结构
-
BE5B35APO - 计算机体系结构,2022年春季,捷克技术大学 (YouTube - 2022年春季) (RISC-V模拟器 - QtRvSim)
-
并行计算机体系结构
-
数字系统设计
十五、安全
- 网络安全 (WT 2018/19) - 波茨坦大学
- 6.1600 计算机安全基础 - MIT 2023秋季
- 6.858 计算机系统安全 - MIT OCW
- CS 253 网络安全 - 斯坦福大学
- CS 161 计算机安全 - 加州大学伯克利分校 (视频)
- 6.875 密码学 - MIT 2018春季
- CSEP590A 现代密码学实践 - 华盛顿大学 (视频)
- CS461/ECE422 计算机安全 - 伊利诺伊大学香槟分校 (视频)
- 密码学导论 - 鲁尔大学波鸿分校
- ECS235B 计算机与信息安全基础 - 加州大学戴维斯分校
- CIS 4930/5930 攻击性计算机安全 - 佛罗里达州立大学
- 信息安全导论I - 印度理工学院马德拉斯分校
- 信息安全II - 印度理工学院马德拉斯分校
- 密码学导论 - 印度理工学院罗克分校
- 密码学与网络安全 - 印度理工学院卡拉格普尔分校
- 18-636 浏览器安全 - 斯坦福大学
- 互联网安全 (WT 2015/16) - 波茨坦大学 (WT 2012/13 (YouTube))
- IT安全 - 泰国国立法政大学
- 安全与密码学 - 泰国国立法政大学
- MOOC - 密码学 - Coursera
- MOOC - 信息安全导论 - Udacity
- ICS 444 计算机与网络安全
- 在线社交网络隐私与安全 - 印度理工学院马德拉斯分校
- 恶意软件动态分析 - Open SecurityTraining (YouTube)
- CSN09112 网络安全与密码学 - 爱丁堡龙比亚大学
- CSN10107 安全测试与网络取证 - 爱丁堡龙比亚大学
- CSN11123 高级云与网络取证 - 爱丁堡龙比亚大学
- CSN11117 电子安全 - 爱丁堡龙比亚大学
- CSN08704 电信学 - 爱丁堡龙比亚大学
- CSN11128 事件响应与恶意软件分析 - 爱丁堡龙比亚大学
- 互联网安全入门 - 波茨坦大学
- 攻击性安全与逆向工程 - Chaplain大学
- 计算机系统安全 - 印度科学学院班加罗尔分校
- UC Berkeley CS 161 计算机安全 - 2021夏季
- UCSD CS291A 差分隐私 - 2021秋季 (Youtube)
- 零知识证明MOOC - 加州大学伯克利分校
十六、计算机图形学
- ECS 175 计算机图形学 - 加州大学戴维斯分校
- 6.837 计算机图形学 - MIT 2017春季
- 6.838 形状分析 - MIT 2017春季
- 计算机图形学导论 - 印度理工学院德里分校
- 计算机图形学 - 印度理工学院马德拉斯分校
- 计算机图形学 - 乌得勒支大学
- CS 5630/6630 可视化 - 犹他大学 (Youtube)
- 高级可视化 - 加州大学戴维斯分校
- 计算机图形学 - Barbara Hecker
- 全局光照光线追踪 - 加州大学戴维斯分校
- 渲染与光线追踪 - 维也纳工业大学
- 计算几何 - 印度理工学院德里分校
- CS 468 计算机科学微分几何 - 斯坦福大学 (视频)
- CMU 15-462/662 计算机图形学
- UC Berkeley CS184/284A 计算机图形与成像 - 2022春季 (YouTube播放列表)
十七、图像处理与计算机视觉
- 数字图像处理 - 印度理工学院卡拉格普尔分校
- CS 543 计算机视觉 - 伊利诺伊大学香槟分校 (录像)
- CAP 5415 计算机视觉 - 中佛罗里达大学(视频讲座)
- EE637 数字图像处理I - 普渡大学 (视频 - 2011春季,视频 - 2007春季)
- 计算机视觉I: 变分方法 - 慕尼黑工业大学 (YouTube)
- 计算机视觉II: 多视图几何 - 慕尼黑工业大学 (YouTube)
- EENG 512/CSCI 512 计算机视觉 - 科罗拉多矿业学院
- 视觉特效计算机视觉 - 伦斯勒理工学院 (YouTube)
- 图像处理导论 - 伦斯勒理工学院 (YouTube)
- CAP 6412 高级计算机视觉 - 中佛罗里达大学(视频讲座) (2018春季)
- 数字信号处理 - 伦斯勒理工学院
- UC Berkeley EE 123 数字信号处理 - 2003秋季
- UC Berkeley EE 225B 数字图像处理 - 2006春季
- 高级视觉 - 爱丁堡大学
- 摄影测量学 - 波恩大学
- MOOC - 计算机视觉导论 - Udacity
- ECSE-4540 数字图像处理导论 - 伦斯勒理工学院
- 计算机视觉机器学习 - 海德堡大学
- 高级计算机视觉 - 俄亥俄州立大学
- 图像处理与计算机视觉导论 - 俄亥俄州立大学
- 计算机视觉机器学习 - 慕尼黑工业大学
- 生物特征识别 - 印度理工学院坎普尔分校
- 定量大成像 - 苏黎世联邦理工学院
- 计算机视觉多视图几何
- 现代C++计算机视觉课程 - 波恩大学
- 摄影测量学I - 波恩大学
- 摄影测量学II - 波恩大学
- 3D计算机视觉 - 新加坡国立大学
十八、计算物理学
- 天文学统计和机器学习
- 使用 Python 2021 进行天文数据分析 - NRC IUCAA
- 太阳物理和空间天气机器学习 SPARC 讲习班 - CESSI IISER Kolkata
- 大气科学中的数据驱动方法和机器学习 - IISC
- 计算天体物理学 - AstroTwinCoLo,2015 年
- 2019 年天体信息学大会 - 加州理工学院
- 用 Python 学习空间科学 - Astroniz
- 罗格斯大学 Python 计算物理学课程,2021 年
- 朗道计算物理课程
- 高能物理中的统计方法和机器学习
- 物理信息机器学习,作者:Steve Brunton
- 物理信息机器学习与工程学系列研讨会
- 物理信息机器学习研讨会
- 杰克-范德普拉斯 天文学中的机器学习 python 教程
十九、计算生物学
- ECS 124 生物信息学算法基础 - 加州大学戴维斯分校 (YouTube)
- CSE549 计算生物学 - 石溪大学
- 7.32 系统生物学 - MIT OCW
- 6.802J/6.874J 计算与系统生物学基础 - MIT OCW
- 6.S897 医疗机器学习 - MIT OCW
- 6.047/6.878 基因组学机器学习 - MIT 2020秋季
- 6.874 生命科学深度学习 - MIT 2021春季
- 计算生物学公开讲座 - MIT
- Bio 84 基因与健康 - 斯坦福大学
- BioMedical Informatics 231 计算分子生物学 - 斯坦福大学
- BioMedical Informatics 258 基因组学、生物信息学与医学 - 斯坦福大学
- 03-251 计算分子生物学导论 - 卡内基梅隆大学
- 03-712 生物建模与仿真 - 卡内基梅隆大学
- MOOC - 生物信息学算法 - 加州大学圣地亚哥分校/Coursera
- 神经网络与生物建模 - 洛桑联邦理工学院
- 计算神经科学 - 洛桑联邦理工学院
- 系统生物学导论
- 生物信息学导论 - 中东技术大学
- MOOC - DNA测序算法 - Coursera
- 生物医学工程前沿 - 耶鲁大学
- 计算系统生物学 - 印度理工学院马德拉斯分校
- 生物信息学算法与应用 - 印度理工学院马德拉斯分校
- 神经科学数据科学与AI暑期学校 - 加州理工学院
- Neuroscience 299 高维向量计算 - 加州大学伯克利分校
- BIO410/510 生物信息学 - 加州州立大学蒙特利湾分校
- BIO412 比较基因组学 - 加州州立大学蒙特利湾分校
- CENG 465 生物信息学导论 - 2020-2021春季
- UCLA Stats M254 计算生物学统计方法 - 2024春季
- 工程师细胞与分子生物学 - 苏黎世联邦理工学院
- 计算生物学统计模型 - 苏黎世联邦理工学院
- UC Berkeley CS 198-96 神经技术导论 - 2020秋季
- MLCB24 计算生物学机器学习 - 2024秋季
二十、量子计算
- 15-859BB 量子计算与信息 - CMU 2018 (Youtube)
- 量子计算与信息 - CMU
- Ph/CS 219A 量子计算 - 加州理工学院
- 量子力学与量子计算 - Umesh Vazirani
- 量子计算导论 - 纽约大学
- Phys 1470 量子计算与信息基础 - 匹兹堡大学
- 量子计算导论 (EE225 圣何塞州立大学)
- 量子计算硬件与架构 (EE274 圣何塞州立大学)
- 量子物理导论 - 苏黎世联邦理工学院 (2020)
- 量子计算与硬件导论 - Qiskit
- 理解量子信息与计算 - Qiskit
- 量子计算与信息讲座 - 印度理工学院马德拉斯分校
- 量子信息与计算 - D.K. Ghosh教授
- 量子计算 - Debabrata Goswami教授
- 量子计算机构建块I - 代尔夫特理工大学
- 量子计算机构建块II - 代尔夫特理工大学
- 量子密码学 - 代尔夫特理工大学
- 量子信息导论
- 量子计算入门 - Michael Nielsen (Part 2)
- 量子计算机系统 - 芝加哥大学
- 量子计算
二十一、机器人与控制
- ROB 101 计算线性代数 - 密歇根大学 (Youtube - 2021秋季)
- ROB 102 人工智能与编程导论 - 密歇根大学
- ROB 311 机器人构建与运动控制 - 密歇根大学
- ROB 320 机器人操作系统 - 密歇根大学
- ROB 501 机器人数学 - 密歇根大学 (Youtube)
- ROB 530 移动机器人学 - 密歇根大学 2022冬季
- Autorob 2022冬季 - 密歇根大学
- DeepRob 2023冬季 - 密歇根大学
- CS 223A 机器人学导论 - 斯坦福大学
- 6.832 欠驱动机器人学 - MIT OCW
- CS287 高级机器人学 - 加州大学伯克利分校 2019秋季
- CS 287 高级机器人学 - 加州大学伯克利分校 2011秋季 (视频)
- CMU 16-715 机器人动力学 - 2022
- CMU 16-745 最优控制 - 2024 (讲义) (YouTube-2023) (YouTube-2022)
- CS235 非机器人设计者的应用机器人设计 - 斯坦福大学
- 视觉导航讲座 - 慕尼黑工业大学 (YouTube)
- CS 205A 机器人学数学方法 - 斯坦福大学 2013秋季
- 机器人学1 - 罗马大学 (YouTube)
- 机器人学2 - 罗马大学 (YouTube)
- 机器人机械与控制 - 首尔国立大学
- 机器人学导论 - 北卡罗来纳大学夏洛特分校
- SLAM讲座
- ME 597 自主移动机器人学 - 滑铁卢大学 2014秋季
- ME 780 自动驾驶感知 - 滑铁卢大学 2017春季
- ME780 机器人与计算机视觉非线性状态估计 - 滑铁卢大学 2017春季
- METR 4202/7202 机器人与自动化 - 昆士兰大学
- 机器人学 - 印度理工学院孟买分校
- 机器视觉导论
- 6.834J 认知机器人学 - MIT OCW
- ROS机器人操作系统入门 - 代尔夫特理工大学
- ROS编程 - 苏黎世联邦理工学院
- 机电系统设计 - 代尔夫特理工大学
- CS 206 进化机器人学 - 2020春季
- 机器人学基础 - 秘鲁科技大学 2018-I
- 机器人学与控制理论实践 - 印度理工学院罗克分校
- 机电一体化
- ME142 机电一体化 - 加州大学默塞德分校 2020春季
- 移动感知与机器人学 - 波恩大学
- MSR2 传感器与状态估计课程 - 波恩大学 2020
- SLAM课程 - 波恩大学 2013
- ENGR486 机器人建模与控制 - 2014冬季
- 机器人学 - D K Pratihar教授
- 移动机器人学导论 - 弗莱堡大学 2019夏季
- 机器人地图构建 - 弗莱堡大学 2018/19冬季
- 机械与机器人运动学 - 印度理工学院卡拉格普尔分校
- 自动驾驶汽车 - 波恩大学 2020/21冬季
- 空中机器人学 - 宾夕法尼亚大学
- 现代机器人学 - 西北大学
- MIT 6.4210/6.4212 机器人操作 - 2022秋季 (Youtube)
- 工业机器人与自动化 - 印度理工学院(ISM)丹巴德分校
- 高级机器人控制 - 南方科技大学
- 自动驾驶汽车 - Andreas Geiger
- 信号处理导论 - Nathan Kutz
- UC Santa Barbara ME 269 网络系统动力学与控制 - 2021秋季
- CMU 16 299 反馈控制系统导论 - 2022春季
- MAE 509 最优与鲁棒控制中的线性矩阵不等式方法 - Matthew M. Peet
- UIUC CS 588 自动驾驶系统工程 - 2021秋季
- EPFL ME 425 模型预测控制 - 2020秋季
- 机器人学习 - 加州大学伯克利分校 CS 294-277
二十二、计算金融
- COMP510 计算金融 - 石溪大学 2007
- 计算金融课程 - Grzelak教授
- 金融工程课程: 利率与xVA - Grzelak教授
- MOOC - 量化金融数学方法 - 华盛顿大学/Coursera
- 18.S096 数学在金融中的应用 - MIT OCW
- 计算金融 - 莱比锡大学
- 交易机器学习 - Udacity
- ACT 460 / STA 2502 精算科学随机方法 - 多伦多大学
- MMF1928H / STA 2503F 定价理论I - 多伦多大学
- STA 4505H 高频与算法交易 - 多伦多大学
- 数学金融 - 印度理工学院古瓦哈提分校
- 量化金融 - 印度理工学院坎普尔分校
- 金融衍生品与风险管理 - 印度理工学院罗克分校
- 金融数学 - 印度理工学院罗克分校
- 哈佛大学经济学2355 经济学深度学习 - 2023春季
- MATH69122 金融随机控制
- UC Davis MAT 133 数学金融 - 2024春季 (2021春季)
二十三、区块链开发
- 区块链和加密货币
- 区块链,Solidity和全栈Web3开发与JavaScript
- 区块链基础知识 2018 - 伯克利 DeCal
- 开发人员区块链 - 2018 年春季 - 伯克利 DeCal
- 加密货币工程与设计 - 2018 年春季 - 麻省理工学院
- 15.S12 区块链与货币,2018 年秋季 - 麻省理工学院
- 区块链–基础和用例
- 成为区块链开发人员
- Solidity 入门 - Dapp 大学
- Solidity 大师 - 达普大学
- IPFS 区块链文件系统 达普大学
- Solidity、区块链和智能合约课程 - Python 入门到专家级教程 - FreeCodingCamp
- Web 3.0 - 构建实时去中心化应用程序