数学建模【作业题-解析汇总(数据处理方法、规划模型、图与网络模型、微分方程模型、统计模型、系统评价决策模型)】

🚀【MOOC数学建模与实验---学习笔记---整理汇总表】🚀

🌈【学习网址:MOOC---郑州轻工业大学---数学建模与实验】🌈

目   录

第2章 软件介绍

第2章 软件介绍作业1

1、指数函数-平面图形-作图(plot)

2、极坐标作图(polar)

3、参数函数作图(plot)

4、空间曲面图形作图(meshgrid)

5、题解and运行截图

第2章 软件介绍作业2

求所有的“水仙花数”

第3章 数据处理方法

3.1、数据插值练习题

1、估计每隔1/10小时的温度值。

2、作出山区的地貌图和等高线图,并对几种插值方法进行比较。

3.2、数据拟合练习题

3、多项式拟合方法

4、非线性最小二乘拟合获得待定系数

第4章 规划模型

作业1、线性规划模型求解:求下列线性规划问题的解.

1、原始输入

2、集合法

作业2、非线性规划模型求解:使用 fmincon 求解下列非线性规划问题。

第5章 图与网络模型

作业1、最小生成树问题:给出8个城市间的最小生成树。

作业2、最大流问题:试求从仓库可运往市场的最大流量

第6章 微分方程模型

作业1、考虑广义 Lorenz 系统

1、Mathematica求解

2、Matlab求解

作业2、相似种群竞争

第7章 统计模型

作业1、方差分析问题

作业2、回归方程

第8章 系统评价决策模型

作业1、选择战斗机

作业2、优秀队员的选拔


第2章 软件介绍

第2章 软件介绍作业1

用subplot分别在不同的坐标系下作出四条曲线:

  • 平面图形(参数方程):plot
  • 空间三维曲线:plot3
  • 空间曲面:mesh
  • 极坐标:polar

步长越小,越密集,光滑程度越好!

1、指数函数-平面图形-作图(plot)

1)曲线y=e^{-x^{2}}的图形,要求曲线颜色为蓝色,曲线形式为虚线,标记符为“o”,图形的标题为“平面图形作图”;

exp 指数函数   【 x0本身是矢量(向量),矢量运算要用“.”。

x0 = -5:0.1:5;
y0 = exp(-x0.^2);
plot(x0,y0,'b--o')   %  b:蓝色;--:虚线;o:标记符号(英文字母o)

plot(x, y, style)描点分段拟合(x, y),style有三部分:b--o (颜色,线条,点)

x0 = -5:0.1:5;
y0 = exp(-x0.^2);
plot(x0,y0,'b--*')

2、极坐标作图(polar)

四叶玫瑰线 \rho =sin2\Theta ;(polar函数),要求图形的标题为“极坐标作图”;

polar(r, p, style):做极坐标(r, p)图像。 

3、参数函数作图(plot)

叶形线,要求图形颜色为红色,图形曲线为点画线”.-”,图形标题为:“参数函数作图”;

向量运算:加“.” 。

% 3、叶形线
t = 0:0.1:5000;
x2 = 3*t./(1+t.^3);
y2 = 3*t.^2./(1+t.^3);
% plot(x2,y2,'r-.*')

4、空间曲面图形作图(meshgrid)

z=sin(\pi \sqrt{x^{2}+y^{2}}) ,其中-30<x<30,-30<y<30,做出函数在给定范围内的曲面图形,图形标为“空间曲面图形作图”.

meshgrid(x, y) :以x轴、y轴做出平面格点;mesh(X, Y, Z)做空间图像。

% 4、空间曲面
x = -10:0.05:10; % x是向量
y = x; % y也是向量
[X, Y] = meshgrid(x,y);
R = sqrt(X.^2 + Y.^2) + eps; % eps:一个很小的正数【开根号,可能会有误差,eps相当于误差的补偿。】
Z = sin(pi*R);

   

5、题解and运行截图

subplot(m, n, i)做一个m*n的画布,下一张图画在第i个位置。 

title(str)设置当前图像的标题为str。

% 1、指数函数
x0 = -5:0.1:5;
y0 = exp(-x0.^2);
% plot(x0,y0)    plot(x0,y0,'b--o')

% 2、四叶玫瑰线 
theta = 0:0.01*pi:2*pi;
rho = sin(2*theta);

% 3、叶形线
t = 0:0.1:5000;
x2 = 3*t./(1+t.^3);
y2 = 3*t.^2./(1+t.^3);
% plot(x2,y2,'r-.*')

% 4、空间曲面
x = -10:0.05:10;
y = x;
[X, Y] = meshgrid(x,y);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(pi*R);

subplot(2,2,1),plot(x0,y0,'r--o'),title('平面图形作图')
subplot(2,2,2),polar(theta,rho,'*'),title('极坐标作图')
subplot(2,2,3),plot(x2,y2,'r.-'),title('参数函数作图')
subplot(2,2,4),mesh(X,Y,Z),title('空间曲线图形作图')

保存图形【英文 命名】【文件 --> 另存为】

  • .fig:保留文件所有信息。
  • .jpg
  • .png(文件小,不太清晰)
  • .bmp(所占空间大)

第2章 软件介绍作业2

求所有的“水仙花数”

建立一个命令M-文件:求所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字的立方和等于该数本身。

例如,153是一个水仙花数,因为153=13+53+33。

i = 0; j = 0; m = 0; k = 1;
a = zeros(); % 空数组 未定义几维
for i = 1:9 % 百位
    for j = 0:9 % 十位
        for m = 0:9 % 个位
            if i*100 + j*10 + m == i^3 + j^3 + m^3;
                a(k,1) = i; %第1行的第1个位置 存放i
                a(k,2) = j; %第1行的第2个位置 存放j
                a(k,3) = m; %第1行的第3个位置 存放m
                a(k,4) = i^3 + j^3 + m^3; %第1行的第4个位置 存放和
                k = k + 1;
            end
        end
    end
end
a

第3章 数据处理方法

3.1、数据插值练习题

1、估计每隔1/10小时的温度值。

在1-12的11小时内,每隔1小时测量一次温度,测得的温度依次为:5,8,9,15,25,29,31,30,22,25,27,24。试估计每隔1/10小时的温度值。

hours = 1:12;
temps = [5 8 9 15 25 29 31 30 22 25 27 24];
h = 1:0.1:12;
t = interp1(hours,temps,h,'spline')  % (直接输出数据将是很多的)
plot(hours, temps, '+')
hold on
plot(h, t, hours, temps, 'r:')     %作图
xlabel('Hour'),ylabel('Degrees Celsius')

2、作出山区的地貌图和等高线图,并对几种插值方法进行比较。

某山区地貌:

在某山区测得一些地点的高程如下表。平面区域为

           (1200<=x<=4000,1200<=y<=3600)

试作出该山区的地貌图和等高线图,并对几种插值方法进行比较。

    X

 Y

1200

1600

2000

2400

2800

3200

3600

4000

1200

1130

1250

1280

1230

1040

900

500

700

1600

1320

1450

1420

1400

1300

700

900

850

2000

1390

1500

1500

1400

900

1100

1060

950

2400

1500

1200

1100

1350

1450

1200

1150

1010

2800

1500

1200

1100

1550

1600

1550

1380

1070

3200

1500

1550

1600

1550

1600

1600

1600

1550

3600

1480

1500

1550

1510

1430

1300

1200

980

通过此题对最近邻点插值、双线性插值方法和双三次插值方法的插值效果进行比较。

相似题目

3.2、数据拟合练习题

3、多项式拟合方法

分别用多项式拟合的方法,在不同阶次下 拟合 函数y=(x2-3x+5)e-5xsinx中给出的数据。

该数据的三次多项式拟合:

>> x0=0:0.1:1; y0=(x0.^2-3*x0+5).*exp(-5*x0).*sin(x0);

>> p3=polyfit(x0,y0,3); vpa(poly2sym(p3),10)

ans =

2.839962923*x^3-4.789842696*x^2+1.943211631*x+.5975248921e-1

绘制拟合曲线:

>> x=0:0.01:1; ya=(x.^2-3*x+5).*exp(-5*x).*sin(x);

>> y1=polyval(p3,x); plot(x,y1,x,ya,x0,y0,'o')

>>p6=polyfit(x0,y0,6); y2=polyval(p6,x);

>>vpa(poly2sym(p6),10)

就不同的次数进行拟合:

>> p4=polyfit(x0,y0,4); y2=polyval(p4,x);

>> p5=polyfit(x0,y0,5); y3=polyval(p5,x);

>> p8=polyfit(x0,y0,8); y4=polyval(p8,x);

拟合最高次数为8的多项式:

>> vpa(poly2sym(p8),5)

ans =

-8.2586*x^8+43.566*x^7-101.98*x^6+140.22*x^5-125.29*x^4+74.450*x^3-27.672*x^2+4.9869*x+.42037e-6

Taylor幂级数展开:

>> syms x; y=(x^2-3*x+5)*exp(-5*x)*sin(x);

>> vpa(taylor(y,9),5)

ans =

5.*x-28.*x^2+77.667*x^3-142.*x^4+192.17*x^5-204.96*x^6+179.13*x^7-131.67*x^8  

4、非线性最小二乘拟合获得待定系数

由下面语句生成一组数据,其中ai为待定系数。

>> x=0:.1:10;

>> y=0.12*exp(-0.213*x)+0.54*exp(-0.17*x).*sin(1.23*x);

并且该数据满足y(x)=a1*exp(-a2*x)+a3exp(-a4*x)*sin(a5*x)采用非线性最小二乘拟合获得待定系数,使得目标函数的值最小。

2、编写函数:

>> f=inline('a(1)*exp(-a(2)*x)+a(3)*exp(-a(4)*x).*sin(a(5)*x)','a','x');

>> [xx,res]=lsqcurvefit(f,[1,1,1,1,1],x,y);

>>xx'

>>res

输出结果:

Optimization terminated successfully:

 Relative function value changing by less than OPTIONS.TolFun

ans =

    0.1197

    0.2125

    0.5404

    0.1702

    1.2300

res =

  7.1637e-007

修改最优化选项:

>> ff=optimset; ff.TolFun=1e-20; ff.TolX=1e-15; % 修改精度限制

>> [xx,res]=lsqcurvefit(f,[1,1,1,1,1],x,y,[],[],ff); xx',res

Optimization terminated successfully:

 Relative function value changing by less than OPTIONS.TolFun

ans =

    0.1200

    0.2130

    0.5400

    0.1700

    1.2300

res =

  9.5035e-021

绘制曲线:

>> x1=0:0.01:10; y1=f(xx,x1); plot(x1,y1,x,y,'o')

第4章 规划模型

作业1、线性规划模型求解:求下列线性规划问题的解.

1、原始输入

Max = 400*x1 + 1000*x2 + 300*x3 - 200*x4;
-2*x2 + x3 + x4 = 0;
2*x1 + 3*x2 <= 16;
3*x1 + 4*x2 <= 24;
x3 < 5;
end

 

2、集合法

!Max = 400*x1 + 1000*x2 + 300*x3 - 200*x4;
! -2*x2 + x3 + x4 = 0  等式约束;
! 2*x1 + 3*x2 <= 16    不等式约束;
! 3*x1 + 4*x2 <= 24    不等式约束;
! x3 < 5               不等式约束;
!四行四列的约束矩阵 ;

sets:
k/1..4/:c,x,b; ! 四维变量集合k, ;
h/1..3/; !;
links(k,k):constr; !四行四列   矩阵用constr表示;
endsets
data:
c = 400 1000 300 -200;
b=0 16 24 5;
constr = 0,-2,1,1
	   2,3,0,0
	   3,4,0,0
	   0,0,1,0;
enddata
max=@sum(k(I):c(I)*x(I)); ! 目标函数 c*x  k(I): I从1到4  Σci*xi;
@sum(k(J):constr(1,J)*x(J))=b(1); !等式约束  k(J): J从1到4  矩阵的第1行 ;
@for(h(I):@sum(k(J):constr(I+1,J)*x(J))<=b(I+1));
end

作业2、非线性规划模型求解:使用 fmincon 求解下列非线性规划问题。

% xiti2.m文件
function ff = xiti2(x)
         ff = x(1)^2 - 2*x(1)*x(2) + 2*x(2)^2 - 4*x(1) - 12*x(2) + x(3)^2;


% contxiti2.m文件
function [c1, ceq1] = contxiti2(x)  % c1 不等式、ceq1 等式
    c1 = 2*x(1)^2 + x(2) - 3*x(3) - 2;
    ceq1 = 2*x(1)^2 + 5*x(2)^2 + 8*x(3)^2 - 4;


% xiti2tiaoyong.m文件
x0 = [0 1 1];

    A = [-2, 2, -1]; % 线性不等式约束
    b = -5;

    Aeq = [1, 1, 2];
    beq = 2;

    lb = [];ub = [8, 4, 1];
    [x, fval] = fmincon(@xiti2, x0, A, b, Aeq, beq, lb, ub, @contxiti2);
    %  @xiti2:调用目标函数   @contxiti2:调用非线性约束   x0:初始条件
    % A、b 不等式线性约束   Aeq, beq:等式线性约束   lb 下界, ub 上界

第5章 图与网络模型

作业1、最小生成树问题:给出8个城市间的最小生成树。

北京(Pe)、东京(T)、莫斯科(Mo)、纽约(N)、渥太华(O)、墨西哥城(Me)、伦敦(L)、巴黎(Pa)各城市之间的航线距离如表5.1所列,给出8个城市间的最小生成树。

                                                                             表5.1八城市间的航线距离

 

L

Me

Mo

N

O

Pa

Pe

T

L

 

56

26

35

53

21

51

60

Me

56

 

55

33

36

91

124

113

Mo

26

55

 

180

31

28

57

80

N

35

33

180

 

5

58

150

108

O

53

36

31

5

 

56

104

96

Pa

21

91

28

58

56

 

82

94

Pe

51

124

57

150

104

82

 

20

T

60

113

80

108

98

94

20

 

% 将伦敦(L)、墨西哥城(Me)、莫斯科(Mo)、纽约(N)、渥太华(O)、巴黎(Pa)、北京(Pe)、东京(T)
% 分别标为顶点1、2、3、4、5、6、7、8.记图G(V, E, W),用matlab求最小生成树如下:
a=zeros(8);
a(1,2)=56;a(1,3)=26;a(1,4)=35;a(1,5)=53;a(1,6)=21;a(1,7)=51;a(1,8)=60;
a(2,3)=55;a(2,4)=33;a(2,5)=36;a(2,6)=91;a(2,7)=124;a(2,8)=113;
a(3,4)=180;a(3,5)=31;a(3,6)=28;a(3,7)=57;a(3,8)=80;
a(4,5)=5;a(4,6)=58;a(4,7)=150;a(4,8)=108;
a(5,6)=56;a(5,7)=104;a(5,8)=96;
a(6,7)=82;a(6,8)=94;
a(7,8)=20;
a=a+a'; % 以上:构造8个城市间的模型
G=sparse(a); % 转稀疏矩阵
% G必须是稀疏矩阵 直接调用算法,可以不转化为稀疏矩阵 Tree:最小生成树 Pred:前驱节点
[Tree,pred]=graphminspantree(G, 'method', 'Kruskal')

nodestr={'L', 'Me', 'Mo', 'N', 'O', 'Pa', 'Pe', 'T'} % 给8个点命名
h=view(biograph(Tree,nodestr,'ShowArrows','off','ShowWeights','on'))
% view转可视图 biograph画图 'ShowArrows','off' 给不给箭头,不给箭头(无向图);给不给权重 给

建模过程中,如果能够将结果转为可视化的图(或 表...),一定要转化为可视化的图(或 表...)。 

文字描述,看起来 比较费劲(尤其对于 非专业阅读者)。

view()函数:画图 biograph 【解法2:直接使用Kruskal算法,可以不将矩阵转为稀疏矩阵】

作业2、最大流问题:试求从仓库可运往市场的最大流量

某产品从仓库运往市场销售。已知各仓库的可供量、各市场需求量及从i仓库至j市场的路径的运输能力如表5.2所列(0表示无路可通),试求从仓库可运往市场的最大流量,各市场需求能否满足?

市场j

仓库i

1

2

3

4

可供量

A

30

10

0

40

20

B

0

0

10

50

20

C

20

10

40

5

100

需求量

20

20

60

20

 

3个发点,4个收点 --> 构造虚拟点:1个发点、1个收点 ------ 集中发货点 发给 A、B、C(容量是可供应量),收点(需求量)

发点到收点的最大流(两点之间,经过中间网络的最大流)

% 解:应用最大流算法必须是单源单汇的网络,因此,构造一个虚拟发点Vs,
% A、B、C的可供应量分别为20、20、100,可令弧VsA、VsB、VsC上的容量分别为
% 20、20、100。构造一个虚拟收点Vt,由于市场1、2、3、4的需求量分别为20、20、
% 60、20,可令弧1vt、2vt、3vt、4vt的容量分别为20、20、60、20。构造赋权有
% 向图G=(V,E,W),其中顶点集V,弧集为E,W为对应各弧容量的邻接矩阵,计算时,
% 将点Vs,A,B,C,1,2,3,4,vt分别编号为1、2、3、4、5、6、7、8、9
% 从仓库到市场的最大流问题归结为求Vs到Vt的最大流。用matlab求解如下:
a=zeros(n); % 生产0矩阵
a(1,2)=20;a(1,3)=20;a(1,4)=100;
a(2,5)=30;a(2,6)=10;a(2,8)=40;
a(3,7)=10;a(3,8)=50;
a(4,5)=20;a(4,6)=10;a(4,7)=40;a(4,8)=5;
a(5,9)=20;a(6,9)=20;a(7,9)=60;a(8,9)=20; % 建立9*9的邻接矩阵 上三角
a=sparse(a); % 转为稀疏矩阵
[b,c]=graphmaxflow(a,1,9) % 用命令函数求两点之间的最大流  点1到点9之间的最大流
% 求得从仓库运往1、2、3、4市场流量为20、20、50、20,最大流量为110,其中市场3不能满足需求。

第6章 微分方程模型

作业1、考虑广义 Lorenz 系统

 会形成混沌现象!

z`:z(三维列向量)对自变量的导数

 将z替换为w,容易区分。

 解存在:b<2

1、Mathematica求解

   三维空间图

b = 0.5

   

b = -0.8

 b = -1

b = -1.5

b = -0.1

b = 0.1

  

  

2、Matlab求解

% 1、Loren1.m文件
function dydx = Loren1(t, y)
global b;
dydx = [8*y(1)-y(3)*(y(1)-y(2));
    -16*y(2)-y(3)*(y(1)-y(2));
    -y(3)+(y(1)-y(2))*(b*y(2)+y(1))];

% 2、aa.m文件
function aa()
global b;
b = -0.5;
x0=[-3.1 1 5];
[t,y]=ode45('Loren1',[0,30],x0);
plot(t,y(:,1),'r-',t,y(:,2),'b*',t,y(:,3),'g--');
figure;
plot3(y(:,1),y(:,2),y(:,3));
grid on;

b = 0.5、0.8、1.8... 

作业2、相似种群竞争

function dp = two(t,x)
global r1 r2 alpha beta n1 n2;
dp = [r1*x(1)*(1-(x(1)+alpha*x(2))/n1);
      r2*x(2)*(1-(x(2)+beta*x(1))/n2)];

function bb()
global n1 n2 alpha beta r1 r2;
n1=100;
n2=100;
alpha=1.2;
beta=0.8;
r1=1;
r2=1;
x0=[10,10];
[t,x]=ode45(@two,[0,100],x0);
plot(t,x(:,1),'b-.',t,x(:,2),'r--') % plot(t,x)
figure
plot(x(:,1),x(:,2))

 

 

图1:蓝线---x(1) 一直在增加;红线---x(2) 一直在减小。

x(2)最终灭绝。

Mathematica求解

第7章 统计模型

作业1、方差分析问题

 

仅供参考!!! 

x=[0.81,1.32,2.35;
    0.75,1.41,2.50;
    0.74,1.35,2.43
    0.86,1.38,2.36;
    0.82,1.40,2.44;
    0.87,1.33,2.46;
    0.75,1.43,2.40;
    0.74,1.38,2.43;
    0.72,1.40,2.21;
    0.82,1.40,2.45;
    0.80,1.34,2.38;
    0.75,1.46,2.40];
[p,table,stats] = anova1(x)

作业2、回归方程

某研究人员需要分析我国固定资产投资状况的影响因素,选取可能的5个影响因素:国内生产总值、商品房屋销售额、财政支出、社会消费品零售总额、进出口总额,统计共15年的各项指标如表7-2所示,试在a=0.05的显著水平下进行多元回归分析,进行总体显著性检验并判断哪些因素对固定资产投资有着显著影响,并给出回归方程。

仅供参考!!! 

y=[3791.7,4753.8,4410.4,4517,5594.5,8080.1,13072.3,17042.1,20019.26,22913.55,24941.11,28406.17,29854.71,32917.73,37213.49];
x1=[11962.5,14928.3,16909.2,18547.9,21617.8,26638.1,34634.4,46759.4,58478.1,67884.6,74462.6,78345.2,82067.46,89442.2,95933.3];
x2=[1100967,1472164,1637542,2018263,2378597,4265938,8637141,10184950,12577269,14271292,17994763,25133027,29878734,39354423,48627517];
x3=[2262.18,2491.21,2823.78,3083.59,3386.62,3742.2,4642.3,5792.62,6823.72,7937.55,9233.56,10798.18,13187.67,15886.5,18902.58];
x4=[5820,7440,8101.4,8300.1,9415.6,10993.7,12462.1,16264.7,20620,24774.1,27298.9,29152.5,31134.7,34152.6,37595.2];
x5=[3084.2,3821.8,4155.9,5560.1,7225.8,9119.6,11271,20381.9,23499.9,24133.8,26967.2,26857.7,29896.3,39274.2,42193.3];
subplot(3,2,1),plot(x1,y);
subplot(3,2,2),plot(x2,y);
subplot(3,2,3),plot(x3,y);
subplot(3,2,4),plot(x4,y);
subplot(3,2,5),plot(x5,y);
x=[ones(15,1),x1',x2',x3',x4',x5'];
[b,bint,r,rint,s]=regress(y',x,0.05)

 

>> chp7

b =

   1.0e+03 *

    2.7533
    0.0006
    0.0000
   -0.0010
   -0.0007
   -0.0001


bint =

   1.0e+03 *

    0.7111    4.7955
    0.0003    0.0009
    0.0000    0.0000
   -0.0027    0.0008
   -0.0017    0.0002
   -0.0003    0.0001


r =

  189.3647
  687.4560
  -69.6550
 -613.1074
 -269.0122
 -131.8150
 -200.1423
  547.3856
 -221.4922
  389.3957
 -193.6889
 -236.4957
  385.4662
 -587.5474
  323.8879


rint =

   1.0e+03 *

   -0.8479    1.2267
   -0.0761    1.4510
   -1.1203    0.9809
   -1.5364    0.3101
   -1.2682    0.7302
   -1.2281    0.9645
   -0.8727    0.4724
   -0.1715    1.2663
   -1.1731    0.7301
   -0.5322    1.3110
   -1.1527    0.7654
   -0.8833    0.4103
   -0.2014    0.9723
   -1.3790    0.2039
   -0.3605    1.0082


s =

   1.0e+05 *

    0.0000    0.0157    0.0000    2.4572

>> 

第8章 系统评价决策模型

作业1、选择战斗机

仅供参考!!!

作业2、优秀队员的选拔

现假设有 20 名队员准备参加全国大学生数学建模竞赛,根据队员的能力和水平要选出18名优秀队员分别组成6 个队,每个队3名队员去参加比赛。选择队员主要考虑的条件依次为有关学科成绩、智力水平、动手能力、写作能力、外语水平、协作能力和其它特长等,各队员得分见表 8.2(8.2.xlsx)。请问该如何选择?

仅供参考!!!

  • 24
    点赞
  • 198
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

upward337

谢谢老板~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值