操作系统【动态分区分配算法——首次适应算法、最佳适应算法、最坏适应算法、临近适应算法】

学习地址(哔哩哔哩网站——王道论坛):https://www.bilibili.com/video/BV1YE411D7nH?p=37

目录

1、首次适应算法(First Fit)

2、最佳适应算法(Best Fit)

3、最坏适应算法(Worst Fit)【又称“最大适应算法”(Largest Fit)】

4、临近适应算法(Next Fit)

动态分区分配算法总结


1、首次适应算法(First Fit)

2、最佳适应算法(Best Fit)

3、最坏适应算法(Worst Fit)【又称“最大适应算法”(Largest Fit)】

空闲分区链,必须按照容量递减的次序进行排序;若不满足容量递减的次序,则重新进行排序!

4、临近适应算法(Next Fit)

空闲分区以地址递增的顺序进行排列。内存分区的大小发生了变化,并不需要对整个链表重新进行排序。算法开销小。

算法总结

算法

算法思想

分区排列顺序

优点

缺点

首次适应算法(First Fit)

从头到尾寻找合适的分区

空闲分区以地址递增次序排列

综合看,首次适应算法性能最好。算法开销小,回收分区后,一般不需要对空闲分区队列重新排序

 

最佳适应算法(Best Fit)

优先使用更小的分区,以保留更多的大分区

空闲分区以容量递增次序排列

会有更多的大分区被保留下来,更能满足大进程需求

会产生很多太小的、难以利用的碎片:算法开销大,回收分区后可能需要对空闲分区队列重新排序

最坏适应算法(Worst Fit)

【又称“最大适应算法”(Largest Fit)】

优先使用更大的分区,以防止产生太小的不可用碎片

空闲分区以容量递减次序排列

可以减少难以利用的小碎片

大分区容易被用完,不利于大进程:算法开销大(原因同上)

临近适应算法(Next Fit)

由首次适应算法演变而来,每次从上次查找结束的位置开始查找

空闲分区以地址递增次序排列(可排列成循环链表)

不用每次都从低地址的小分区开始检索。算法开销小(原因同首次适应算法)

会使高地址的大分区也被用完

### 不同内存分配算法的比较 #### 首次适应算法 (First Fit, FF) 首次适应算法按照地址递增顺序遍历空闲分区列表,找到第一个能满足请求大小的空闲区域进行分配。如果当前申请小于等于某个空闲区,则该部分被划分出来供新进程使用;否则继续寻找下一个更大的可用区间直到结束。 - **优点** - 实现简单直观。 - 可以较快定位到合适的空闲块位置[^1]。 - **缺点** - 容易造成低址端积累大量细碎不可用的空间,即所谓的“外部碎片化”,影响后续较大程序加载效率[^3]。 ```c++ void* first_fit(size_t size){ for(auto& block : free_blocks){ // 假设free_blocks是一个全局变量表示所有空闲区块 if(block.size >= size + sizeof(BlockHeader)){ void *ptr = split_block(&block, size); return ptr; } } throw std::bad_alloc(); } ``` #### 循环首次适应算法 (Next Fit, NF) 此方法类似于首次适配法,区别在于不是每次都从头开始搜索而是记录上一次成功匹配的位置作为起点向后查找直至链表末端再折返至起始处重复上述过程。 - **优点** - 减少了平均访问路径长度从而提高了速度性能,在某些情况下能更好地分布剩余空间减少局部聚集现象[^2]. - **缺点** - 同样存在产生较多小片断的问题,并且当指针接近尾部时可能需要额外时间完成一轮完整的扫描才能命中目标. ```cpp static Block* last_searched; void* next_fit(size_t size){ auto iter = find_if(free_blocks.begin(), free_blocks.end(), [&](const Block &blk)->bool{return blk.addr > last_searched->addr && blk.size>=size;}); if(iter != free_blocks.end()){ last_searched = &(*iter); return allocate_from_block(*iter,size); }else{ // wrap around to beginning of list and try again. ... } } ``` #### 最佳适应算法 (Best Fit, BF) 最佳适应策略会先对全部候选对象进行全面考察之后选取尺寸最为贴近需求量的那个来实施切割操作。这意味着要维护一个有序的数据结构以便快速检索最优解。 - **优点** - 尽力避免浪费任何一点宝贵的资源,使得最终形成的零散片段尽可能少而大利于未来重用. - **缺点** - 维护排序增加了复杂度和成本,而且频繁更新可能导致数据不稳定甚至错误。另外长期以往也会促使高地址范围不断累积难以处理的小型空白地带. ```java // Java伪代码示意 public class BestFitAllocator { TreeSet<FreeBlock> sortedBySize = new TreeSet<>(Comparator.comparingInt(b -> b.getSize())); public synchronized Object bestFit(int reqSize) throws OutOfMemoryError { FreeBlock fitstSuitable = this.sortedBySize.stream() .filter(fb -> fb.getSize() >= reqSize).findFirst().orElseThrow(OutOfMemoryError::new); Object allocatedMemRegion = allocateFrom(fitstSuitable,reqSize); updateSortedSetAfterAllocation(fitstSuitable); return allocatedMemRegion ; } private void updateSortedSetAfterAllocation(FreeBlock modifiedBlock){ // 更新逻辑... } private Object allocateFrom(FreeBlock suitable,int requestedSize){ // 分配逻辑... } } ``` #### 最坏适应算法 (Worst Fit, WF) 最坏适应法则倾向于挑选出最大一块未占用领域来进行拆分工作。这种做法可以保证剩下的那部分依旧保持相对较大的规模,便于将来接纳其他大型任务而不至于过早陷入困境之中。 - **优点** - 能够有效预防因过度细分而导致的整体利用率下降的情况发生,有助于维持较高的灵活性和支持更多种类的应用场景^. - **缺点** - 寻找最大值的过程较为耗时特别是对于很长的队列而言。此外一旦选错了方向就很难纠正过来可能会错失更好的机会. ```python def worst_fit(size): largest_free=None for block in free_list: if not largest_free or block['size']>largest_free['size']: largest_free=block if largest_free is None or largest_free['size'] < size: raise MemoryError('Out Of Memory') assigned=largest_free.split(size) return assigned.address ```
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

upward337

谢谢老板~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值