题目描述
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有满足条件且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例:
给定数组 nums = [-1, 0, 1, 2, -1, -4],
满足要求的三元组集合为:
[
[-1, 0, 1],
[-1, -1, 2]
]
本题的重点及难点:如何去除重复解。
解题步骤:
- 如果数组为空或者数组长度小于3,返回空。
- 使用sort函数对数组进行排序。
- 遍历排序后数组:
3.1. 若nums[i]>0:因为已经排序好,所以后面不可能有三个数加和等于0,直接返回结果;
3.2. 对于重复元素:直接跳过,避免出现重复解;
3.3. 令左指针L=i+1,右指针R=len−1,当L<R时,执行循环:
3.3.1. 若和大于0,说明nums[R] 太大,R左移;
3.3.2. 若和小于0,说明nums[L] 太小,L右移;
3.3.3. 当nums[i]+nums[L]+nums[R]==0,执行循环,判断左界和右界是否和下一位置重复,去除重复解。并同时将L,R 移到下一位置,寻找新的解。
由于nums[i]+nums[L]+nums[R]==0的情况相对较少,因此,放在最后判断,可以减少一定的执行时间。
具体实现代码如下:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
int len = nums.size();
if(len<3) return {};
sort(nums.begin(),nums.end());
vector<vector<int>> res;
for(int i=0;i<len-2;++i ) {
if(nums[i]>0) return res;
if(i>0 && nums[i] == nums[i-1]) continue;
int L=i+1,R=len-1;
while(L < R) {
int tSum = nums[i]+nums[L]+nums[R] ;
if(tSum > 0) {
--R;
}else if(tSum < 0) {
++L;
}else {
vector<int> temp = {nums[i],nums[L],nums[R]};
res.emplace_back(move(temp));
while(L<R && nums[L]==nums[L+1] ) ++L;
while(L<R && nums[R]==nums[R-1]) --R;
++L;
--R;
}
}
}
return res;
}
};
复杂度分析:
- 时间复杂度:O(n2),数组排序 O(NlogN),遍历数组 O(n),双指针遍历 O(n),总体 O(NlogN)+O(n)∗O(n),O(n2)
- 空间复杂度:O(1)
AC结果: