【蓝桥杯】试题 历届试题 对局匹配

问题描述

资源限制
  时间限制:1.0s 内存限制:256.0MB
问题描述
  小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。
  小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。
  现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, … AN。
  小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?

输入格式  
  第一行包含两个个整数N和K。
  第二行包含N个整数A1, A2, … AN。
  对于30%的数据,1 <= N <= 10
  对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
输出格式
  一个整数,代表答案。

输入样例

10 0
1 4 2 8 5 7 1 4 2 8

输出样例

6

解题思路

思路参考
  既然题目要求只能分数相差k的人组队,那么只需要满足在线人中没有两两相差k分即可。
  将所有人按分数分成k组,每组内相邻两个分数相差k,那么一组中任意分数相邻的人都可以组队,因此每组中应该选择不相邻且人数最多的方案,再将每组选中的方案相加。因此,使用动态规划应该满足dp[i]=max(dp[i-1],dp[i-2]+val[i])。
PS:val[i]表示分数为i的人数。

解题代码

#include<iostream>
using namespace std;
int socre[100005];
int dp[100005];
int ans=0;
int main()
{
     int n,k;
     cin>>n>>k;
     for(int i=0;i<n;i++)
     {
          int x;
          cin>>x;
          socre[x]++;
      } 
     //当k等于0时,只要分数不同的组中,每组都只有一人即不能组队 
     if(k==0)
     {
          for(int i=0;i<=100000;i++)
               if(socre[i]) ans++;  
          cout<<ans;
          return 0;
      } 
     for(int i=0;i<k;i++)
     { 
          int val[100005];
          int sum=0;
          int m=0;
          for(int j=i;j<=100000;j=j+k) 
               val[m++]=socre[j];
          dp[0]=val[0];
      //完成--分为若干组,每组内相邻分数相差K
      for(int j=1;j<=m;j++)
      {
            if(j==1)   dp[j]=max(dp[0],val[j]);
            else
                 dp[j]=max(dp[j-2]+val[j],dp[j-1]);
           sum=max(sum,dp[j]);
      } 
      ans+=sum;
 }
 cout<<ans;
 return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值