问题描述
资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
小明喜欢在一个围棋网站上找别人在线对弈。这个网站上所有注册用户都有一个积分,代表他的围棋水平。
小明发现网站的自动对局系统在匹配对手时,只会将积分差恰好是K的两名用户匹配在一起。如果两人分差小于或大于K,系统都不会将他们匹配。
现在小明知道这个网站总共有N名用户,以及他们的积分分别是A1, A2, … AN。
小明想了解最多可能有多少名用户同时在线寻找对手,但是系统却一场对局都匹配不起来(任意两名用户积分差不等于K)?
输入格式
第一行包含两个个整数N和K。
第二行包含N个整数A1, A2, … AN。
对于30%的数据,1 <= N <= 10
对于100%的数据,1 <= N <= 100000, 0 <= Ai <= 100000, 0 <= K <= 100000
输出格式
一个整数,代表答案。
输入样例
10 0
1 4 2 8 5 7 1 4 2 8
输出样例
6
解题思路
思路参考
既然题目要求只能分数相差k的人组队,那么只需要满足在线人中没有两两相差k分即可。
将所有人按分数分成k组,每组内相邻两个分数相差k,那么一组中任意分数相邻的人都可以组队,因此每组中应该选择不相邻且人数最多的方案,再将每组选中的方案相加。因此,使用动态规划应该满足dp[i]=max(dp[i-1],dp[i-2]+val[i])。
PS:val[i]表示分数为i的人数。
解题代码
#include<iostream>
using namespace std;
int socre[100005];
int dp[100005];
int ans=0;
int main()
{
int n,k;
cin>>n>>k;
for(int i=0;i<n;i++)
{
int x;
cin>>x;
socre[x]++;
}
//当k等于0时,只要分数不同的组中,每组都只有一人即不能组队
if(k==0)
{
for(int i=0;i<=100000;i++)
if(socre[i]) ans++;
cout<<ans;
return 0;
}
for(int i=0;i<k;i++)
{
int val[100005];
int sum=0;
int m=0;
for(int j=i;j<=100000;j=j+k)
val[m++]=socre[j];
dp[0]=val[0];
//完成--分为若干组,每组内相邻分数相差K
for(int j=1;j<=m;j++)
{
if(j==1) dp[j]=max(dp[0],val[j]);
else
dp[j]=max(dp[j-2]+val[j],dp[j-1]);
sum=max(sum,dp[j]);
}
ans+=sum;
}
cout<<ans;
return 0;
}