Description
已知两个已经排好序(非减序)的序列X和Y,其中X的长度为m,Y长度为n,
现在请你用分治算法,找出X和Y的第k小的数,算法时间复杂度为O(max{logm, logn})。
此题请勿采用将序列X和Y合并找第k小的O(m+n)的一般方法,要充分利用X和Y已经排好序的这一特性。
输入格式
第一行有三个数,分别是长度m、长度n和k,中间空格相连(1<=m,n<=100000; 1<=k<=m+n)。
第二行m个数分别是非减序的序列X。第三行n个数分别是非减序的序列Y。
输出格式
序列X和Y的第k小的数。
输入样例
5 6 7
1 8 12 12 21
4 12 20 22 26 31
输出样例
20
提示
假设:X序列为X[xBeg…xEnd],而Y序列为Y[yBeg…yEnd]。
将序列X和Y都均分2段,即取X序列中间位置为 xMid (xMid = xBeg+(xEnd-xBeg)/2),也同理取序列Y中间位置为yMid。
比较X[xMid]和Y[yMid]的大小,此时记录X左段和Y左段元素个数合计为halfLen,即halfLen = xMid-xBeg+yMid-yBeg+2。
-
当X[xMid] < Y[yMid]时,在合并的数组中,原X[xBeg…xMid]所有元素一定在Y[yMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于Y[yMid]这个元素,
故以后没有必要搜索 Y[yMid…yEnd]这些元素,可弃Y后半段数据。
此时只需递归的对X序列+Y序列的前半段,去搜索第k小的数。(2) 若k >= halfLen,则此时第k大的元素一定不会小于X[xMid]这个元素,
故以后没有必要搜索 X[xBeg…xMid]这些元素,可弃X前半段数据。
此时只需递归的对X序列的后半段+Y序列,去搜索第 k-(xMid-xBeg+1)小的数。 -
当X[xMid] >= Y[yMid]时,在合并的数组中,原Y[yBeg…yMid]的所有元素一定在X[xMid]的左侧,
(1) 若k < halfLen,则此时第k大的元素一定不会大于X[xMid]这个元素,
故以后没有必要搜索 X[xMid…xEnd]这些元素,可弃X后半段数据。
此时只需递归的对X序列的前半段+Y序列,去搜索第k小的数。(2) 若k >= halfLen,则此时第k大的元素一定不会小于Y[yMid]这个元素,
故以后没有必要搜索 Y[yBeg…yMid]这些元素,可弃Y前半段数据。
此时只需递归的对X序列+Y序列的后半段,去搜索第 k-(yMid-yBeg+1)小的数。
递归的边界,如何来写?
- if (xBeg > xEnd) return Y[yBeg + k - 1]; //X序列为空时,直接返回Y序列的第k小元素。
- if (yBeg > yEnd) return X[xBeg + k - 1]; //Y序列为空时,直接返回X序列的第k小元素。
效率分析:
T(m,n)表示对长度为m的有序的X序列和长度为n的有序的Y序列,搜索第k小元素的复杂度。
T(m,n)=1 m=0或n=0
T(m,n) <= max{T(m/2,n), T(m,n/2)} + O(1)
则T(m,n) = O(max{logm, logn})
-----------------------------分割线--------------------------------
上面那段是题目加上别人的分析,接下来写一下自己的理解吧。
假设输入为下面这段:
4 5 6
1 6 7 8
2 5 8 9 10
首先我们先找出两段合在一起的中间数,比如上面那个中间数就是 (4+6)/ 2 = 5。然后找出每一段的中间数,然后比较两段中间数谁打谁小,比如上面,第一段中间数是6,第二段中间数是8,比较完之后,发现6小于8,则可以把6和6之前的数放在8后面,比较完之后,接下来要来看一下第k小,这个k位于哪里,k = 6 > 5,则说明第一段6和6之前的数据都是报废的,这样的话就可以把k挪进了(计算上是减少的)。其他条件分析亦然。
源代码:
#include <iostream>
using namespace std;
int a[10000];
int b[10000];
void F(int lowa, int higha, int lowb, int highb, int k) {
//其实这里最重要的是理解lowa、higha、lowb、highb和k这些要怎么计算
//因为数组下标的原因,可能没有多加思考的话就会导致越界等问题,导致中断
//最好的方法就是在理解的基础之上重新自己打一遍代码,推演一遍
int mida = (lowa + higha) / 2;
int midb = (lowb + highb) / 2;
int half = (mida + midb - lowa - lowb + 2);
if (a[mida] < b[midb]) {
if (k < half) {
highb = midb - 1;
}
else {
k = k - mida - 1 + lowa;
lowa = mida + 1;
}
}
else {
if (k < half) {
higha = mida - 1;
}
else {
k = k - midb - 1 + lowb;
lowb = midb + 1;
}
}
if (lowa > higha) {
cout << b[lowb + k - 1];
return;
}
if (lowb > highb) {
cout << a[lowa + k - 1];
return;
}
F(lowa, higha, lowb, highb, k);
}
int main() {
int n, m, k;
cin >> n >> m >> k;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
for (int i = 0; i < m; i++) {
cin >> b[i];
}
F(0, n - 1, 0, m - 1, k);
return 0;
}