SPSS缺失值处理

本文探讨了数据预处理中的缺失值处理技术,包括均值、中位数和众数替换,适合不同类型的数据。此外,还介绍了更复杂的回归估计法和期望最大化(EM)算法,特别是当缺失数据较多时,EM算法能提供最优解决方案。这些方法在数据科学实践中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 均值替换法:
    适用于连续数据(定量数据),缺失数据占比不超过10%。
    可直接生成新的数据列
    在这里插入图片描述
    在这里插入图片描述

  • 中位数替换
    适用于等级变量 例如满意度。(定性变量先要在变量试图中数值代替)
    在这里插入图片描述
    在这里插入图片描述

需要手动输入(根据频率结果选定替换值,然后升序拍排列-空值置顶, 最后输入替换值)

  • 众数替换
    适用于分类变量 例如性别。(定性变量先要在变量试图中数值代替)
    其余同中位数操作。
  • 回归估计法
    同EM法。
  • 期望最大化法(EM)
    最优的缺失值处理法。(是先求期望,然后再求极大似然估计值)
    在缺失数据较多的情形,收敛的速度较慢.
    在这里插入图片描述
    在这里插入图片描述
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值