strict=False 但还是size mismatch for []: copying a param with shape [] from checkpoint,the shape in cur

当使用`model.load_state_dict(state_dict, strict=False)`加载预训练模型时,即使设置了`strict=False`,如果模型结构与预训练权重的键匹配但尺寸不匹配,仍会报错。解决办法是手动从状态字典中移除不匹配的全连接层权重。例如,对于ViT模型,可以从.pth文件加载的字典中移除'head.weight'和'head.bias',确保只加载尺寸匹配的部分,从而在不同类别数目的数据集上进行微调。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

strict=False 但还是size mismatch for []: copying a param with shape [] from checkpoint,the shape in cur

问题

我们知道通过

model.load_state_dict(state_dict, strict=False)

可以暂且忽略掉模型和参数文件中不匹配的参数,先将正常匹配的参数从文件中载入模型。

笔者在使用时遇到了这样一个报错:

RuntimeError: Error(s) in loading state_dict for ViT_Aes:
        size mismatch for mlp_head.1.weight: copying a param with shape torch.Size([1000, 768]) from checkpoint, the shape in current model is torch.Size([10, 768]).
        size mismatch for mlp_head.1.bias: copying a param with shape torch.Size([1000]) from checkpoint, the shape in current model is torch.Size([10]).

一开始笔者很奇怪,我已经写明strict=False了,不匹配参数的不管就是了,为什么还要给我报错。

原因及解决方案

经过笔者仔细打印模型的键和文件中的键进行比对,发现是这样的:strict=False可以保证模型中的键与文件中的键不匹配时暂且跳过不管,但是一旦模型中的键和文件中的键匹配上了,PyTorch就会尝试帮我们加载参数,就必须要求参数的尺寸相同,所以会有上述报错。

比如在我们需要将某个预训练的模型的最后的全连接层的输出的类别数替换为我们自己的数据集的类别数,再进行微调,有时会遇到上述情况。这时,我们知道全连接层的参数形状会是不匹配,比如我们加载 ImageNet 1K 1000分类的预训练模型,它的最后一层全连接的输出维度是1000,但如果我们自己的数据集是10分类,我们需要将最后一层全链接的输出维度改为10。但是由于键名相同,所以PyTorch还是尝试给我们加载,这时1000和10维度不匹配,就会导致报错。

解决方案就是我们将 .pth 模型文件读入后,将其中我们不需要的层(通常是最后的全连接层)的参数pop掉即可。

以 ViT 为例子,假设我们有一个 ViT 模型,并有一个参数文件 vit-in1k.pth,它里面存储着 ViT 模型在 ImageNet-1K 1000分类数据集上训练的参数,而我们要在自己的10分类数据集上微调这个模型。

model = ViT(num_classes=10)
ckpt = torch.load('vit-in1k.pth', map_location='cpu')
msg = model.load_state_dict(ckpt, strict=False)
print(msg)

直接这样加载会出错,就是上面的错误:

	size mismatch for head.weight: copying a param with shape torch.Size([1000, 768]) from checkpoint, the shape in current model is torch.Size([10, 768]).
	size mismatch for head.bias: copying a param with shape torch.Size([1000]) from checkpoint, the shape in current model is torch.Size([10]).

我们将最后 pth 文件加载进来之后(即 ckpt) 中全连接层的参数直接pop掉,至于需要pop掉哪些键名,就是上面报错信息中提到了的,在这里就是 head.weighthead.bias

ckpt.pop('head.weight')
ckpt.pop('head.bias')

之后在运行,会发现我们打印的 msg 显示:

_IncompatibleKeys(missing_keys=['head.weight', 'head.bias'], unexpected_keys=[])

即缺失了head.weighthead.bias 这两个参数,这是正常的,因为在自己的数据集上微调时,我们本就不需要这两个参数,并且已经将它们从模型文件字典 ckpt 中pop掉了。现在,模型全连接之前的层(通常即所谓的特征提取层)的参数已经正常加载了,接下来可以在自己的数据集上进行微调。

因为反正我们也不用这些参数,就直接把这个键值对从字典中pop掉,以免 PyTorch 在帮我们加载时试图加载这些维度不匹配,我们也不需要的参数。

<think>好的,我现在要解决用户在加载LSTM模型state_dict时遇到的size mismatch问题,特别是关于linear.weight和linear.bias的错误。首先,我需要回忆一下PyTorch模型加载的相关知识,以及常见的错误原因和解决方法。 用户提到的问题是在加载state_dict时出现尺寸不匹配,错误涉及linear层的权重和偏置。根据引用中的信息,比如引用[2]中的例子,类似的错误可能是因为模型结构在保存和加载时不一致,或者在DataParallel的使用上存在问题。比如,当使用DataParallel包装模型后,保存的state_dict中的参数名称会带有"module."前缀,而加载时如果模型没有用DataParallel包装,就会导致名称不匹配,从而引发尺寸错误。这可能是一个原因。 另一个可能的原因是模型结构本身发生了变化。比如,用户可能在保存模型后修改了LSTM层的隐藏层大小、输入维度,或者后面的全连接层(linear层)的输入输出维度,导致加载时参数的形状与当前模型不匹配。例如,如果原来的linear层的输入是500维,而现在改成了2000维,那么对应的weight和bias的尺寸就会不一致,导致加载错误。 接下来,我需要考虑解决方法。根据引用[3],设置strict=False可以忽略不匹配的参数,但这样可能导致模型部分参数没有被加载,影响性能。所以这只是临时解决方法,不能根本解决问题。正确的做法应该是确保模型结构在保存和加载时完全一致。 具体到用户的问题,linear层的尺寸不匹配,可能是因为LSTM层的输出维度发生了变化,导致后面的全连接层的输入尺寸需要调整。例如,假设LSTM的hidden_size被修改了,或者是否使用双向LSTM(bidirectional)的情况不同,这会影响全连接层的输入维度。比如,双向LSTM的输出维度是hidden_size*2,如果之前是单向的,而现在改为双向,那么后面的linear层的输入维度需要乘以2,否则就会出现尺寸不匹配。 此外,检查是否有无意识地修改了模型的层结构,比如添加或删除了某些层,或者在模型定义时参数设置错误。例如,在定义LSTM时,设置input_size、hidden_size或者num_layers时可能有误,导致后续层的参数尺寸不符。 另外,检查保存的checkpoint是否完整,是否正确地保存了整个模型而不仅仅是state_dict。有时候如果保存的是模型的其他部分,可能在加载时结构不一致。 可能的解决步骤包括: 1. 检查模型定义,确保保存和加载时的结构完全一致,特别是LSTM的参数和后面的linear层。 2. 检查是否使用了DataParallel或相关的包装,确保加载时模型的结构与保存时一致。 3. 如果结构确实需要改变,考虑手动调整state_dict中的参数名称或尺寸,或者在加载后重新初始化某些层。 4. 打印当前模型和checkpoint中的参数形状,对比差异,找出具体是哪些层不匹配。 比如,用户可以打印当前模型的state_dict和加载的checkpoint中的state_dict,比较linear.weight和linear.bias的形状,看是否因为输入或输出维度变化导致。例如: ```python print("Current model's linear.weight:", model.linear.weight.shape) print("Checkpoint's linear.weight:", checkpoint['linear.weight'].shape) ``` 这样可以帮助确定问题所在。如果发现是输入维度不同,可能需要调整LSTM层的输出,或者调整后续层的结构,使其与保存的checkpoint中的参数匹配。 总结来说,关键点在于确保模型结构的一致性,避免在保存和加载之间修改模型架构,正确处理DataParallel带来的参数名前缀问题,以及在必要时调整参数或结构。</think>### 解决方案:LSTM模型加载state_dict时出现`size mismatch`的解决方法 #### 1. 根本原因分析 - **模型结构不一致**:加载的state_dict与当前模型结构参数(如LSTM的`input_size`、`hidden_size`、`num_layers`,或后续全连接层的维度)不匹配[^2][^3]。 - **DataParallel前缀问题**:保存模型时使用了`DataParallel`包装,但加载时未使用,导致参数名多出`module.`前缀,引发形状不匹配[^2]。 - **双向LSTM改动**:若LSTM从单向改为双向,输出维度翻倍,但后续全连接层未调整输入维度,导致`linear.weight`尺寸不匹配。 - **参数误修改**:训练时调整了模型层的维度(如隐藏层大小)但未同步修改后续层。 --- #### 2. 具体解决步骤 **步骤1:检查模型结构一致性** - 确保训练和加载时的模型定义**完全一致**,重点关注: ```python # LSTM层参数检查示例 class MyModel(nn.Module): def __init__(self): super().__init__() self.lstm = nn.LSTM( input_size=100, # 必须与保存时一致 hidden_size=256, # 必须与保存时一致 bidirectional=False # 若改为True,后续层需适配 ) self.linear = nn.Linear(256, 10) # 输入维度需匹配LSTM的hidden_size # 若使用双向LSTM,输入维度应为 hidden_size * 2 # self.linear = nn.Linear(256 * 2, 10) ``` **步骤2:处理DataParallel前缀问题** - **情况1**:保存时用`DataParallel`,加载时未用: ```python # 加载时手动去除"module."前缀 state_dict = torch.load('checkpoint.pth') new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()} model.load_state_dict(new_state_dict) ``` - **情况2**:保存时未用`DataParallel`,加载时使用: ```python # 加载时添加"module."前缀 model = nn.DataParallel(model) model.load_state_dict(torch.load('checkpoint.pth')) ``` **步骤3:手动调整参数维度(适用于结构微调)** - 若必须修改模型结构,可**选择性加载匹配参数**: ```python checkpoint = torch.load('checkpoint.pth') model_dict = model.state_dict() # 仅加载名称和形状一致的参数 matched_dict = {k: v for k, v in checkpoint.items() if k in model_dict and v.shape == model_dict[k].shape} model_dict.update(matched_dict) model.load_state_dict(model_dict) print(f"Loaded {len(matched_dict)}/{len(checkpoint)} parameters") ``` **步骤4:严格模式与警告处理** - 使用`strict=False`跳过不匹配参数(慎用,可能影响性能): ```python model.load_state_dict(checkpoint, strict=False) # 忽略不匹配参数[^3] ``` - 通过警告信息定位具体不匹配的层: ``` Missing keys: ['linear.weight', 'linear.bias'] # 缺失的键(当前模型新增的层) Unexpected keys: ['module.lstm.weight_ih_l0'] # 意外的键(checkpoint中多余的层) ``` --- #### 3. 验证方法 - **打印参数形状对比**: ```python # 检查关键层形状 print("当前模型 linear.weight:", model.linear.weight.shape) print("Checkpoint linear.weight:", checkpoint['linear.weight'].shape) ``` - **输出示例**: ``` 当前模型 linear.weight: torch.Size([10, 256]) Checkpoint linear.weight: torch.Size([10, 512]) # 不匹配!需调整LSTM输出维度 ``` --- #### 4. 高级调试技巧 - **可视化模型结构**:使用`torchsummary`库输出模型结构: ```python from torchsummary import summary summary(model, input_size=(100, 32)) # 输入维度示例(seq_len, batch_size) ``` - **检查LSTM输出维度**: ```python # 验证LSTM输出维度是否与linear层匹配 lstm_output, _ = model.lstm(torch.randn(10, 32, 100)) # (seq_len, batch, input_size) print("LSTM输出维度:", lstm_output.shape[-1]) # 应为 hidden_size * num_directions ``` ---
评论 21
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值