- 博客(197)
- 收藏
- 关注
原创 深度学习模型部署:使用Flask将图像分类(5类)模型部署在服务器上,然后在本地GUI调用。(全网模型部署项目步骤详解:从模型训练到部署再到调用)
实现提供了一个完整的端到端解决方案,从服务器端模型部署到本地GUI调用。你可以根据需要进一步自定义界面和功能。
2025-05-22 17:44:46
760
原创 机器学习回归预测中预处理的特征工程
特征工程核心原则,结合领域知识构造特征,避免盲目生成无效特征。通过交叉验证评估特征组合效果,逐步筛选和调整。优先保留具有物理意义的特征,便于模型解释和业务落地。通过以上步骤,可系统性地将原始数据转化为高质量特征,为回归模型奠定坚实基础。
2025-05-17 14:59:00
578
原创 机器学习数据预处理回归预测中标准化和归一化
标准化更适合需要保留数据分布信息或对异常值鲁棒性要求较高的场景。归一化更适合数据分布均匀、需固定取值范围的场景。实际应用中可通过交叉验证对比两种方法的效果,选择最优预处理方式。合理使用标准化或归一化,可显著提升模型训练效率和泛化能力,是机器学习流程中不可忽视的关键环节。
2025-05-16 23:56:46
378
原创 机器学习前言2
机器学习正快速渗透到各行各业,但其成功依赖高质量数据、合理算法选择和领域知识结合。机器学习模型是机器学习中的核心组件,它是从数据中学习到的数学表示,用于对新数据进行预测或决策。模型可以看作是一个函数 它将输入数X 映射到输出 Y。机器学习模型是从数据中学习的数学函数,用于预测或决策。主要类型:监督学习、无监督学习、强化学习、深度学习。关键选择因素:任务类型、数据规模、可解释性、计算资源。评估方法:准确率、MSE、轮廓系数等。
2025-05-16 15:59:19
1018
原创 争对机器学习和深度学习里Python项目开发管理项目依赖的工具中方便第三方库和包的安装
requirements.txt和environment.yam文件说明。混合使用:在 environment.yaml 中通过 pip 字段兼容 requirements.txt 的包。版本锁定:使用 pip-tools(生成 requirements.txt)或 conda-lock(锁定 Conda 依赖)确保完全可复现的环境。现代替代方案:考虑 Poetry(pyproject.toml)或 Pipenv(Pipfile)获得更智能的依赖管理。
2025-05-15 20:36:48
506
原创 机器学习模型部署:使用Flask 库的 Python Web 框架将XGBoost模型部署在服务器上(简单小模型)从模型训练到部署再到本地调用
确保服务器防火墙开放了5000端口(或你使用的其他端口),对于生产环境,考虑使用Nginx作为反向代理,添加适当的错误处理和日志记录,根据你的实际模型调整特征预处理步骤,考虑添加输入数据验证,这样你就可以在本地PyCharm中轻松调用部署在服务器上的模型了。
2025-03-27 09:28:44
948
原创 网站开发和手机APP开发说明:以技术、编程语言、所需库简单说明几个之间区别大部分相同
技术重叠部分:后端、数据库、状态管理、API设计。关键差异:Web依赖浏览器技术(HTML/CSS/JS),APP需适配移动端特性(手势、离线存储)。APP开发需考虑应用商店规则和设备兼容性。建议:先掌握通用技术(如JavaScript/TypeScript + 后端),再根据需求扩展至APP或Web专项领域。
2025-03-27 08:00:00
731
原创 Linux使用集群服务器查看已安装conda环境,且环境名无显示、系统环境混乱等问题
在使用 集群服务器之前可查看,module avail 和 grep 命令来查看系统中可用的 Anaconda 模块及其版本,使用 module list 命令查看已加载的 Anaconda 模块,使用 conda --version 命令查看当前使用的 Anaconda 版本。
2025-03-26 11:16:37
799
原创 机器学习时间序列回归预测数据预处理中特征工程、数据标准化和数据集划分说明
特征工程、数据标准化和数据集划分是机器学习时间序列回归预测中数据预处理的重要环节。通过合理的特征工程、数据标准化和数据集划分,可以显著提高模型的准确性和泛化能力。时间序列数据预处理的关键是保持时间顺序和依赖性,任何标准化或特征工程都应只在训练数据上进行拟合,然后应用到验证/测试集,避免数据泄露
2025-03-26 08:59:51
1464
原创 机器学习回归预测中数据清洗与数据聚合说明
数据清洗和聚合是回归预测中不可或缺的一环。通过系统性地处理缺失值、异常值,并合理聚合数据,可显著提升模型性能。实际应用中需结合业务场景,灵活选择方法,并通过交叉验证优化参数
2025-03-25 09:36:32
554
原创 机器学习数据集划分解释训练集、验证集和测试集
训练集:用于训练模型,让模型学习数据特征。验证集:用于调整超参数和防止过拟合,帮助优化模型。测试集:用于最终评估模型的泛化能力,反映模型在实际应用中的表现。通过合理划分数据集,可以有效避免模型过拟合或欠拟合,提高模型的泛化能力和可靠性。
2025-03-08 15:08:12
1608
原创 Matplotlib库中color 参数颜色有多少种
Matplotlib 支持的颜色名称非常丰富,涵盖了 HTML/CSS 中的大部分颜色。你可以根据需要选择合适的颜色名称来美化你的图表。
2025-03-08 14:53:04
421
原创 数据分析绘制随时间顺序变化图加入线性趋势线——numpy库的polyfit计算一次多项式拟合
时间索引转换:np.arange(len(filtered_data.index)) 将时间索引转换为从 0 开始的整数序列,因为 polyfit 需要数值型的输入。线性拟合:np.polyfit(time_index, filtered_data['wind_obs'], deg=1) 计算线性趋势线的系数。deg=1 表示一次多项式(线性拟合)。趋势线绘制:使用 np.poly1d 创建多项式对象,并通过 polynomial(time_index) 计算趋势线的值,然后将其绘制在图上。
2025-03-08 14:44:49
520
原创 从一个或多个CSV表里读取筛选时间范围指定变量变化趋势
确保CSV文件中的时间列名称与代码中的data_time一致,如果不一致,请修改为实际的列名
2025-03-08 14:31:57
200
原创 Linux服务器Ubuntu系统环境中安装Jupyter Notebook并且配置内核以便在网页端调用
可以在服务器镜像中成功安装并配置 Jupyter Notebook,并方便地调用和使用 Jupyter Notebook 内核。
2025-03-01 23:06:58
539
原创 机器学习模型训练超参数优化使用sklearn库里网格搜索(Grid Search)方法所有参数含义解释
RandomizedSearchCV 是 sklearn.model_selection 模块中的一个类,用于在给定的参数空间中随机搜索最佳的超参数组合。相比于 GridSearchCV,RandomizedSearchCV 不会遍历所有可能的参数组合,而是随机选择一部分组合进行评估,因此在参数空间较大时效率更高。
2025-02-22 19:15:31
905
原创 机器学习做模型预测时超参数优化提升性能(降低评价指标)五种种方法:网格搜索、随机搜索、贝叶斯优化、遗传算法、基于梯度的优化
超参数优化是提升模型性能的关键步骤。代码训练用的到,想到降低评价指标均方误差 (MSE)、均方根误差 (RMSE)、平均绝对误差 (MAE)、决定系数 (R²),这是是几种常用的超参数优化方法:1.网格搜索(Grid Search)2.随机搜索(Random Search)3.贝叶斯优化(Bayesian Optimization)4.遗传算法(Genetic Algorithm)5.基于梯度的优化(Gradient-Based Optimization)
2025-02-22 18:56:06
2045
原创 高性能计算集群中SLURM资源管理和任务调度系统
SLURM集群是HPC计算环境中的重要组成部分,它提供了强大的资源管理和任务调度功能,能够满足大规模计算任务的需求。通过合理配置和管理SLURM集群,可以充分利用集群的计算资源,提高计算效率和性能。
2025-01-12 18:31:28
969
原创 什么是SSH登录?SSH客户端软件有哪些?
在处理敏感信息(如用户名和密码)时,确保您在一个安全的环境中操作,并避免在公共或不安全的网络上进行这些操作。此外,定期更新您的密码和使用强密码策略也是保护您账户安全的重要措施。
2025-01-11 14:13:38
1341
原创 服务器、电脑和移动手机操作系统
服务器、电脑和移动手机操作系统在定义、主要特点和常见类型等方面存在显著差异。这些操作系统各自具有独特的功能和优势,满足了不同场景下的应用需求。
2025-01-11 13:42:06
635
原创 机器学习模型建立代码编程时可以使用的库和框架
总的来说,选择哪个机器学习库或框架取决于具体的项目需求、团队技术栈以及目标硬件平台。在实际应用中,可以根据项目的实际情况选择合适的库和框架来构建、训练和部署机器学习模型。
2025-01-05 12:32:27
702
原创 作为一名程序员应该知道什么是IDE(集成开发环境,Integrated Development Environment)
IDE(集成开发环境)是专为程序开发设计的软件,集成代码编辑器、编译器、调试器等工具,提升开发效率。主要功能包括代码编辑、项目管理、编译构建、调试及插件扩展。常见IDE如Visual Studio、Eclipse、PyCharm、IntelliJ IDEA、Xcode及轻量级的Visual Studio Code均受开发者欢迎。
2025-01-05 11:32:21
1507
原创 机器学习算法的分类
机器学习算法的分类方式多种多样,每种分类方式都有其独特的算法和应用场景。选择合适的算法不仅取决于数据的特性,还与业务的需求密切相关。
2025-01-04 21:55:54
1085
原创 从csv文件读取或者创建字典类型dict读取时间每列年月日时分秒信息合并成一列里显示2025-01-04 10:45:15
处理Pandas DataFrame中的日期和时间数据,并且想要将这些数据转换为datetime对象,你通常会使用pd.to_datetime函数,而不是直接使用datetime.datetime,因为pd.to_datetime能够更方便地处理DataFrame中的列,并且提供了更多的选项来处理各种日期和时间格式。然而,了解datetime模块本身仍然是有用的,因为它提供了许多底层的功能和类,这些功能和类在需要更细粒度的控制时可能会很有用。
2025-01-04 15:50:11
304
原创 机器学习中回归预测模型中常用四个评价指标MBE、MAE、RMSE、R2解释
综上所述,MBE、MAE、RMSE和R2是机器学习中常用的四个评级指标,它们各有优缺点,适用于不同的应用场景。在实际应用中,需要根据具体需求选择合适的指标来评估模型的性能。
2024-12-28 22:45:34
4733
原创 机器学习随机森林回归模型数据预处理中归一化或者标准化
综上所述,对于随机森林回归模型来说,归一化和标准化都是可行的数据预处理方法。具体选择哪种方法取决于数据的特性、模型的特性以及具体的应用场景。在实际应用中,可以通过实验来比较两种方法的效果,选择更适合的方法来提高模型的准确性和稳定性。
2024-12-28 22:24:52
901
原创 机器学习随机森林回归时间序列预模型中时间滑动窗口作用以及参数设置
然而,需要注意的是,滑动窗口技术也存在一些挑战和限制。例如,处理大量窗口可能会增加计算复杂度和内存需求;窗口在数据的边界处可能会遇到不完整的数据,从而影响特征的准确性;以及窗口大小和步长的选择需要仔细权衡以平衡模型的性能和训练时间等。总的来说,时间滑动窗口在时间序列模型中起到了至关重要的作用,它使得模型能够更准确地捕捉和分析时间序列数据中的特征、趋势和异常行为。通过合理设置窗口大小和滑动步长,可以进一步提高模型的预测性能和适应性。
2024-12-28 22:10:18
942
原创 深度学习卷积神经网络CNN之MobileNet模型网络模型详解说明(超详细理论篇)
MobileNet模型作为深度学习领域中的一个重要里程碑,以其轻量、高效的特性在多个实际应用中得到了广泛应用。通过不断优化和创新,MobileNet系列将继续为移动设备和嵌入式系统提供高效的深度学习解决方案。
2024-12-22 16:44:19
2097
2
原创 机器学习Python使用scikit-learn工具包详细介绍
Scikit-learn是一个功能强大且易于使用的机器学习库,适合初学者和专业人士进行数据挖掘和数据分析。通过掌握Scikit-learn的基本用法和主要功能模块,用户可以更加高效地实现各种机器学习任务。
2024-12-22 16:14:10
554
原创 机器学习中做时间序列模型考虑把时间作为特征分析
时间序列模型时间窗口的选择是一个复杂而关键的过程,需要根据数据的特性、预测任务的要求以及计算资源等因素进行综合考虑。通过合理选择时间窗口,可以提高模型的预测精度和鲁棒性。
2024-12-20 21:30:31
1173
原创 机器学习中数据预处理的方法
机器学习中数据预处理的方法多种多样,具体选择哪种方法取决于数据的特性和模型的需求。通过合理的数据预处理,可以提高模型的准确性和稳定性,从而提升机器学习算法的性能。
2024-12-20 21:08:42
1199
原创 6.2章节python字符串的格式化三种方式
这三种方式各有优缺点,选择哪种方式主要取决于具体的需求和代码风格。f-strings因其简洁和直观性,在现代Python编程中越来越受欢迎
2024-12-14 18:54:08
281
原创 关于在虚拟环境中装tensorflow框架跑模型安装了一些库报错问题
ModuleNotFoundError Traceback (most recent call last)Cell In[7], line 7 5 from tensorflow.keras.models import Sequential 6 from tensorflow.keras.layers import LSTM, Dense----> 7 from tensorflow.keras.wrappers.scikit_lear
2024-12-11 21:04:20
854
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人