自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 Python编程语言05:字典、集合、序列

文章目录字典1. 可变类型与不可变类型2. 字典的定义3. 创建和访问字典4. 字典的内置方法1. 集合的创建2. 访问集合中的值3. 集合的内置方法4. 集合的转换5. 不可变集合序列1. 针对序列的内置函数字典1. 可变类型与不可变类型序列是以连续的整数为索引,与此不同的是,字典以"关键字"为索引,关键字可以是任意不可变类型,通常用字符串或数值。字典是 Python 唯一的一个 映射类型,字符串、元组、列表属于序列类型。那么如何快速判断一个数据类型 X 是不是可变类型的呢?两种方法:麻

2020-07-31 21:52:45 276

原创 Python编程语言04:列表、元组、字符串

文章目录列表1. 列表的定义2. 列表的创建3. 向列表中添加元素4. 删除列表中的元素5. 获取列表中的元素6. 列表的常用操作符7. 列表的其它方法元组1. 创建和访问一个元组2. 更新和删除一个元组3. 元组相关的操作符4. 内置方法5. 解压元组字符串1. 字符串的定义2. 字符串的切片与拼接3. 字符串的常用内置方法4. 字符串格式化列表简单数据类型整型<class 'int'>浮点型<class 'float'>布尔型<class 'bool'>

2020-07-27 22:54:00 536

原创 Python编程语言04:列表、元组

文章目录列表1. 列表的定义2. 列表的创建3. 向列表中添加元素4. 删除列表中的元素5. 获取列表中的元素6. 列表的常用操作符7. 列表的其它方法元组1. 创建和访问一个元组2. 更新和删除一个元组3. 元组相关的操作符4. 内置方法5. 解压元组列表简单数据类型整型<class 'int'>浮点型<class 'float'>布尔型<class 'bool'>容器数据类型列表<class 'list'>元组<class 't

2020-07-27 22:42:08 400

原创 Python编程语言03:异常处理

文章目录异常处理1. Python 标准异常总结2. Python标准警告总结3. try - except 语句4. try - except - finally 语句5. try - except - else 语句6. raise语句异常处理异常就是运行期检测到的错误。计算机语言针对可能出现的错误定义了异常类型,某种错误引发对应的异常时,异常处理程序将被启动,从而恢复程序的正常运行。1. Python 标准异常总结BaseException:所有异常的 基类Exception:常规异常的

2020-07-25 16:12:13 267

原创 Python编程语言02:条件与循环语句

文章目录条件语句1. if 语句2. if - else 语句3. if - elif - else 语句4. assert 关键词循环语句1. while 循环2. while - else 循环3. for 循环4. for - else 循环5. range() 函数6. enumerate()函数7. break 语句8. continue 语句9. pass 语句10. 推导式11. 综合例子条件语句1. if 语句if expression: expr_true_suitei

2020-07-22 22:55:40 360

原创 Python编程语言01:变量、运算符、数据类型、位运算

文章目录变量、运算符与数据类型1. 注释2. 运算符3. 变量和赋值4. 数据类型与转换5. print() 函数位运算1. 原码、反码和补码2. 按位非操作 ~3. 按位与操作 &4. 按位或操作 |5. 按位异或操作 ^6. 按位左移操作 <<7. 按位右移操作 >>8. 利用位运算实现快速计算9. 利用位运算实现整数集合变量、运算符与数据类型1. 注释在 Python 中,# 表示注释,作用于整行。【例子】单行注释# 这是一个注释print("Hello

2020-07-22 21:37:48 117

原创 SQLZOO习题练习

最近开始学习mysql,做SQLZOO上面的题,下面部分题目的思路:Q1: Equatorial Guinea and Dominican Republic have all of the vowels (a e i o u) in the name. They don’t count because they have more than one word in the name.Find ...

2020-04-19 22:39:51 982

原创 查看xgb特征重要性输出全是nan,ValueError:'Booster.get_score() results in empty' 的原因及解决方案

1 问题描述我想用XGBoost来建立一个模型,通过特征构造之后我需要做一个特征选择来减少特征数量、降维,使模型泛化能力更强,减少过拟合:这里尝试通过查看特征重要性来筛选特征:from xgboost import XGBRegressorfrom xgboost import plot_importancexgb = XGBRegressor()xgb.fit(X, Y)prin...

2020-04-13 18:08:14 4084

原创 Task5 模型融合

模型融合赛题:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX模型融合目标对于多种调参完成的模型进行模型融合。完成对于多种模型的融合,提交融合结果并打卡。内容介绍简单加权融合:回归(分类概率):算术平均融合(Arithm...

2020-04-04 20:37:19 107

原创 Task4 建模调参

内容介绍线性回归模型:线性回归对于特征的要求;处理长尾分布;理解线性回归模型;模型性能验证:评价函数与目标函数;交叉验证方法;留一验证方法;针对时间序列问题的验证;绘制学习率曲线;绘制验证曲线;嵌入式特征选择:Lasso回归;Ridge回归;决策树;模型对比:常用线性模型;常用非线性模型;模型调参:贪心调参方法;网格调参方法;贝叶斯调...

2020-04-01 20:22:34 304

原创 Task3 特征工程

以天池比赛-二手车数据挖掘为例,比赛地址:https://tianchi.aliyun.com/competition/entrance/231784/introduction?spm=5176.12281957.1004.1.38b02448ausjSX主要内容常见的特征工程主要包括异常值处理,特征归一化/标准化,数据分桶,缺失值处理,特征构造,特征筛选,降维等。首先导入需要的包:imp...

2020-03-28 20:37:35 437

原创 机器学习中分类任务和回归任务中的评价指标

1 分类问题的评价指标1.1 AccuracyAccuracy(精度),计算方法为: 对于模型预测结果,判断正确记1,判断错误记0,所以Acc表示模型预测正确的样本数占样本总数的比例,取值为 0-1 ,越接近 1,说明模型的效果越好。就是错...

2020-03-19 02:21:15 4355 3

原创 pytorch中index_select的用法

最近开始接触pytorch,发现torch.index_select不是很好理解,就查了一下文档:torch.index_select(input, dim, index, out=None) → Tensor input :输入一个张量 dim :索引所依赖的维度 index :索引的index out :返回的张量,默认为None torch...

2020-02-28 22:05:34 1435

原创 numpy中一个列向量乘以一个行向量为什么是一个数

平时在学习使用numpy库时,会遇到一种情况,假如说我想计算一个列向量乘以一个行向量的结果,我们的思路大概是这样:首先创建一个数组,里面包含3个数字,查看一下数据和数据的形状:一个列向量乘以一个行向量,常规思路是np.dot(a.T,a),就是a和它的转置相乘,先看一下a.T长啥样:这里发现a和a.T形状竟然一样,都是(3,)看一下计算结果:本来以为是一个3*3的矩阵,结果是一个数...

2020-02-22 17:12:33 6021

原创 欠拟合与过拟合的形成原因及解决方案

对于一个机器学习或者深度学习模型而言,我们不仅希望它能在训练数据中表现较好(训练误差),同时希望它在测试集中有较好的表现(泛化误差)。过拟合和欠拟合就是用来描述泛化误差的。欠拟合可以理解为对训练数据的信息提取不充分,没有学习到数据背后的规律,导致模型应用在测试集上时,无法做出正确的判断。过拟合可以理解为对训练数据的信息提取过多,模型不仅学习到了数据背后的规律,还把数据噪声当做规律学习到了。...

2020-02-19 11:31:16 1091

原创 softmax回归

1 理论基础softmax回归是神经网络中的分类模型,模型输出为一个离散值。我们假设数据集的特征向量为

2020-02-14 21:55:12 173

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除