前言:深度学习、计算机视觉在读研究生小白,课题与对抗样本相关,打算记录一些自己的学习笔记、心得或成果。
题目:On Physical Adversarial Patches for Object Detection
作者:MarkLee, J.ZicoKolter
发表:ICML 2019 Workshop on Security and Privacy of Machine Learning
关键词:目标检测、对抗样本、对抗补丁
效果图:
摘要
展示了一个可在真实世界攻击物体检测器(YOLOv3)的对抗补丁(patch)。与以往的patch不同,这个patch不用覆盖在特定物体上,甚至可以放置于任意位置,就能对几乎所有的图中物体进行检测抑制。
具体可见https://youtu.be/WXnQjbZ1e7Y
介绍和相关工作
略,这俩部分都是些对抗补丁领域比较基础的内容。
另外,本文工作可以看作DPatch的升级版。
可参看Dpatch: Attacking object detectors with adversarial patches
方法
式子一: