论文笔记: On Physical Adversarial Patches for Object Detection

该论文探讨了一种物理对抗补丁,能够在真实世界中有效干扰YOLOv3物体检测器。与传统方法不同,此补丁无需覆盖特定物体,可放置任意位置,导致模型对几乎所有物体的检测失效。实验显示,该补丁在未剪裁和剪裁情况下都能显著降低检测准确性,且在真实世界中仍保持攻击效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:深度学习、计算机视觉在读研究生小白,课题与对抗样本相关,打算记录一些自己的学习笔记、心得或成果。

题目:On Physical Adversarial Patches for Object Detection
作者:MarkLee, J.ZicoKolter
发表:ICML 2019 Workshop on Security and Privacy of Machine Learning
关键词:目标检测、对抗样本、对抗补丁
效果图:在这里插入图片描述

摘要

展示了一个可在真实世界攻击物体检测器(YOLOv3)的对抗补丁(patch)。与以往的patch不同,这个patch不用覆盖在特定物体上,甚至可以放置于任意位置,就能对几乎所有的图中物体进行检测抑制。
具体可见https://youtu.be/WXnQjbZ1e7Y

介绍和相关工作

略,这俩部分都是些对抗补丁领域比较基础的内容。
另外,本文工作可以看作DPatch的升级版。
可参看Dpatch: Attacking object detectors with adversarial patches

方法

式子一

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值