
深度学习
文章平均质量分 86
泪眼问花~
这个作者很懒,什么都没留下…
展开
-
从零构建自己的网络————训练篇
参数越多越好吗?答案:不一定。如果你想实现更复杂的功能,则必不可少的得使用更多的参数,但是参数太多的话会导致过拟合的现象,但是太少的化会导致欠拟合,关于如何设置合适的参数数量以及如何防止欠拟合,这也是一个值得学习的方面,本文不在这对此阐述。如果我把所有的参数都集中在一层,可不可以?这是一个非常值得品味的问题,既然足够多的参数就能实现相应的功能,我们为什么不把这些参数放在同一层呢?到时候也不叫什么深度学习,改名叫宽度学习就行了。这个问题,在早些之前确实存在这种说法,足够宽的神经元也能实现相应的功能原创 2023-03-13 21:14:16 · 244 阅读 · 0 评论 -
从零构建自己的神经网咯————模型篇
在了解深度神经网络后,相信你一定对神经元感到并不陌生,这个早在上个世纪就以模仿人的神经而提出的概念现在依然在人工智能领域中广泛使用,即使我们现在不得不承认,人类的神经网络比这复杂多得多,甚至可以说这俩这并没什么关系。不要着急, 我们先继续看这段代码,这段代码并不复杂,且最重要的是,我们无论实现一个两层、三层、还是几十层的网络,都是这几个步骤,但这是历史遗留问题,我们在学习中依然使用这个概念,如图,以下是个三层的神经网络架构。层放在全连接层的前面,就无法提取到输入的非线性特征了,这会严重影响模型的性能。原创 2023-03-12 23:24:25 · 281 阅读 · 0 评论 -
从零构建自己的神经网络————数据集篇
例如,可以将图片文件命名为1.jpg,2.jpg,3.jpg等,对应的标注文件命名为1.txt,2.txt,3.txt等。其中,txt_path是包含数据集信息的文本文件的路径,transform是对数据集进行预处理的函数或变换。每张图片都有一个唯一的标识符(比如图片的文件名或者数据库中的id),在数据库中与该图片对应的标注数据也被存储在同一行中,这样可以确保图片和标注一一对应。因此,这段代码的含义是创建一个能够将dataset中的数据分批次加载的数据加载器,每个批次包含3个随机排列的数据样本。原创 2023-03-11 23:41:59 · 3132 阅读 · 0 评论