deepseek系列论文汇总(时至2025.5)

deepseek系列

详细论文笔记查看:deepseek系列论文笔记
以下是截至2025年4月的DeepSeek系列核心论文汇总,涵盖架构创新、训练优化及推理能力突破等方向,按发布时间排序:

一、基础架构与训练优化

  1. DeepSeek LLM
    • 标题:DeepSeek LLM: Scaling Open-Source Language Models with Longtermism
    • 时间:2024年1月
    • 链接:arXiv:2401.02954
    • 突破:首次提出分组查询注意力(GQA)降低推理成本,并优化多步学习率调度器提升训练效率,奠定了后续模型的高效训练基础。

  2. DeepSeekMoE
    • 标题:DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models
    • 时间:2024年1月
    • 链接:arXiv:2401.06066
    • 突破:通过细粒度专家分割与共享专家隔离策略,实现MoE架构的灵活性与性能平衡,计算成本不变下模型性能提升30%。

  3. DeepSeek Math
    • 标题:DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models
    • 时间:2024年2月
    • 链接:arXiv:2402.03300
    • 突破: 高效强化学习算法:提出组相对策略优化(GRPO),作为 PPO 的变体,通过群组奖励归一化和迭代训练机制,减少对价值网络的依赖,显著降低训练资源消耗,同时提升数学推理能力。

  4. DeepSeek-V2
    • 标题:DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
    • 时间:2024年5月
    • 链接:arXiv:2405.04434
    • 突破:引入多头潜在注意力(MLA)机制,减少推理时KV缓存需求,使推理速度提升40%,训练成本降低50%。最后,我们遵循 DeepSeekMath (Shao et al., 2024) 采用组相对策略优化 (GRPO) 来进一步使模型与人类偏好保持一致,并产生 DeepSeek-V2 Chat (RL)。

    • 为了促进 MLA 和 DeepSeekMoE 的进一步研究和开发,我们还为开源社区发布了 DeepSeek-V2-Lite,这是一个配备 MLA 和 DeepSeekMoE 的较小模型。它总共有 15.7B 个参数,其中每个 token 激活了 2.4B。
  5. DeepSeek-V3
    • 标题:DeepSeek-V3 Technical Report
    • 时间:2024年12月
    [2024年12月27日提交(v1),最后修订于2025年2月18日(此版本,v2)]
    • 链接:arXiv:2412.19437
    • 突破:总参数量达671B,激活参数仅37B/Token,采用无辅助损失负载均衡策略,支持FP8混合精度训练,降低60%显存占用。


二、推理能力与强化学习

  1. DeepSeek-R1
    • 标题:DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning
    • 时间:2025年1月
    • 链接:arXiv:2501.12948
    • 突破:基于DeepSeek-V3-Base,通过多阶段强化学习训练(RL)显著提升逻辑推理能力,支持思维链(CoT)和过程透明化输出。

  2. DeepSeek-R1 蒸馏模型
    • 标题:Distilling Reasoning Capabilities from DeepSeek-R1 to Smaller Models
    • 时间:2025年1月
    • 链接:GitHub项目页
    • 突破:将R1的推理能力迁移至Qwen、Llama等轻量模型,使小型模型在GSM8K等数学推理基准上准确率提升25%。


DeepSeek-R1-Zero是一个通过大规模强化学习(RL)训练的模型,在初步步骤中没有使用监督微调(SFT),它展示了出色的推理能力。通过强化学习,DeepSeek-R1-Zero自然地展现出许多强大且有趣的推理行为。然而,它也遇到了一些挑战,如可读性差和语言混用问题。
为了解决这些问题并进一步提升推理性能,我们引入了DeepSeek-R1,该模型在强化学习之前结合了多阶段训练和冷启动数据。
DeepSeek-R1在推理任务上的表现与OpenAI-o1-1217相当。为了支持研究社区,我们开源了DeepSeek-R1-Zero、DeepSeek-R1以及从DeepSeek-R1基于Qwen和Llama蒸馏出的六个密集模型(分别为15亿、70亿、80亿、140亿、320亿和700亿参数)。
在这里插入图片描述

二、推理优化版本

  1. DeepSeek-R1(671B满血版)

    • 核心能力:通过强化学习优化,专攻复杂推理(如数学计算、代码生成)。
    • 训练流程:基于V3基座模型,分阶段融合冷启动数据与多领域微调。
  2. R1-Zero

    • 定位:R1训练中间产物,纯强化学习驱动,无人工调节。
    • 用途:生成冷启动思维链数据,用于后续模型优化。
  3. R1蒸馏版

    • 分类:包括Qwen-1.5B/7B/32B、Llama-8B/70B等不同参数规模的轻量化版本。
    • 优势:推理速度提升3-5倍,硬件成本降低90%。

三、前沿探索与技术创新

DeepSeek-V3
• 标题:DeepSeek-V3 Technical Report
• 时间:2024年12月
• 链接:arXiv:2412.19437
• 突破:总参数量达671B,激活参数仅37B/Token,采用无辅助损失负载均衡策略,支持FP8混合精度训练,降低60%显存占用。


四、其他

https://cloud.tencent.com/developer/article/2505000
在这里插入图片描述

研究价值与应用

学术工具化:部分成果已转化为论文辅助工具,如参考文献自动生成(支持GB/T 7714等格式)、选题建议与文献分析功能。
开源生态:DeepSeek-R1系列模型及代码已在GitHub开源,推动学术界在推理优化领域的协同创新。

如需获取完整论文列表或特定领域研究细节,可访问DeepSeek官方GitHub或arXiv平台检索标题关键词。

参考:
https://blog.csdn.net/weixin_44986037/category_12971052.html?spm=1001.2014.3001.5482
https://blog.csdn.net/youcans/article/details/145391398
https://cloud.tencent.com/developer/article/2505000

《餐馆点餐管理系统——基于Java和MySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java和数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订单表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性和完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订单表中的顾客ID和菜品ID则作为外键,与顾客信息表和菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示和后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜单、下单。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品和价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在显示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索和排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证和过滤,防止非法字符和异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理和软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
在安卓开发领域,通过 Android Studio 构建实用的“单词本”应用是一个极具代表性的项目。该应用主要面向学生、语言学习者以及其他希望提升词汇量的用户,旨在帮助他们高效学习和记忆英语单词。 安卓移动开发专注于为安卓设备(如智能手机和平板电脑)开发应用程序。Android Studio 作为谷歌官方推荐的集成开发环境(IDE),提供了代码编辑器、调试器、构建系统和模拟器等强大工具,极大地提升了开发效率。 在“单词本”项目中,Android Studio 的直观界面和丰富功能得到了充分体现。开发者可以利用 XML 设计用户界面,同时使用 Java 或 Kotlin 编写业务逻辑,实现如添加、删除、复习单词等功能。 应用的核心功能包括: 数据存储:采用 SQLite 数据库存储单词及其含义。SQLite 是轻量级的数据库管理系统,可直接嵌入应用中,无需服务器支持。 用户界面:通过多个活动(Activity)展示不同功能,例如主界面显示单词列表,详情页展示单词详细信息,复习界面用于测试用户记忆。 UI 设计:使用 XML 布局文件定义控件布局和样式。Android Studio 的布局编辑器还支持可视化设计,方便开发者操作。 事件处理:通过为按钮等控件设置监听器,响应用户操作(如点击事件),实现添加、删除单词等功能。 通知与提醒:利用安卓的通知 API 和 AlarmManager 服务,提醒用户定期复习单词。 测试与调试:借助 Android Studio 的调试工具,开发者可以进行单元测试和集成测试,设置断点、查看变量值、跟踪代码执行流程,从而发现并修复问题。 开发过程中,Android 模拟器可用于测试应用。模拟器能够模拟不同设备型号和操作系统版本,帮助开发者评估应用的兼容性和性能。 此外,“报告.doc”文件通常详细记录了项目的整体情况,包括目标、设计思路、实现过程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值