Codeforces Round #638 Div. 2
A.Phoenix and Balance
CF1348 A
题意:给定
n
n
n次操作,第
i
i
i次可以向
a
/
b
a/b
a/b加上
2
i
2^i
2i,要求
a
、
b
a、b
a、b都被加了
n
2
\frac{n}{2}
2n次。求
∣
a
−
b
∣
|a-b|
∣a−b∣的最小值。
思路:
二进制的一道水题
可以知道对2i而言,他大于
∑
k
=
1
i
−
1
2
i
\sum_{k=1}^{i-1} 2^i
∑k=1i−12i
所以假设
b
b
b是较大的数,只要把
2
n
2^n
2n给
b
b
b,剩下的从最小的依次加到
b
b
b上。余下的都给
a
a
a。
int main(){
int t=ird();
LL n,a,b;
while(t--){
n=lrd();
b=qpow(2,n+1)-2;
a=qpow(2,n);
for(int i=1;i<n/2;i++){
a+=qpow(2,i);
}
b-=a;
a-=b;
cout<<a<<endl;
}
}
B. Phoenix and Beauty
CF1348 B
题意:
给定大小为
n
n
n的数组
a
a
a,要求在其中插入大小为
1...
n
1...n
1...n数字使所有长度为
k
k
k的子序列和相同。
无法实现输出-1,否则输出插入后的序列。
思路:
手推一下就发现又是构造循环数组
当已有的数组a中的最小循环节(出现过的数字个数)大于
k
k
k,输出
−
1
-1
−1。
否则就输出
m
∗
n
m*n
m∗n:原数组
a
a
a每个元素都占一个循环节,依次输出。
int main(){
int t=ird();
int n,m,a,b;
while(t--){
map<int,int> mp,vis;
n=ird();m=ird();b=0;
for(int i=1;i<=n;i++){
a=ird();
mp[a]++;if(mp[a]==1){vis[++b]=a;}
}
if(b>m){cout<<-1<<endl;continue;}
if(m>b){
while(b!=m){
vis[++b]=n;
}
}
cout<<m*n<<endl;
for(int i=1;i<=n;i++){
for(int j=m;j>=1;j--)
cout<<vis[j]<<" ";
}
cout<<endl;
}
}
C. Phoenix and Distribution
CF1348 C
题意:给定字符串s,要求将其中的每个字符分为
k
k
k个非空字符串中。要求输出所有分法中最大字典序字串的最小值。
思路:
首先保证非空:如果最小的字符个数不能把k个填满,就直接输出按序排列之后的第k个字符。(剩下的所有字符放在最小的字符后面即可)
接着按均分的思想走:
- 如果剩下的所有值都相同,就平分输出最长的。
- 如果不相同,就把剩下的字符按字典序从小到大输出。
int vis[30],v[30];
int n,m,a,b,co=0,nw,tn,fla;
char tt;
int ju(){
fla=1;
if(co==1||(vis[v[1]]==0&&co==2)){
tt='a'+v[1];cout<<tt;
for(int i=1;i<=co;i++){
for(int j=1;j<=vis[v[i]]/m+(vis[v[i]]%m!=0);j++){tt='a'+v[i];cout<<tt;}
}
cout<<endl;
}
else fla=0;
return fla;
}
int main(){
int t;
cin>>t;
string s;
while(t--){
mem(vis,0);
co=0;
cin>>n>>m>>s;
for(int i=0;i<n;i++){
if(vis[s[i]-'a']==0){
v[++co]=s[i]-'a';
}
vis[s[i]-'a']++;
}
sort(v+1,v+1+co);
if(vis[v[1]]>=m){
vis[v[1]]-=m;
if(ju()==1)continue;
tt='a'+v[1];cout<<tt;
nw=1;
if(vis[v[nw]]==0)nw++;
for(int i=1;i<=n-m;i++){
tt='a'+v[nw];cout<<tt;
vis[v[nw]]--;
if(vis[v[nw]]==0){nw++;}
}
cout<<endl;
continue;
}
else{
nw=0;fla=1;
for(int i=1;;i++){
if(nw+vis[v[fla]]>=m){
tt='a'+v[fla];cout<<tt<<endl;
break;
}
nw+=vis[v[fla++]];
}
}
}
}
D. Phoenix and Science
CF1348 D
题意:
细胞分裂,第一天数量为
1
1
1。之后的每天都可以有
0
0
0~
当
前
细
胞
个
数
当前细胞个数
当前细胞个数的细胞数
m
m
m分裂为
m
2
\frac{m}{2}
2m.然后当天晚上每个细胞都会
+
1
+1
+1.
问变为
n
n
n个细胞的最少天数。
思路:
观察样例,手推一下。
发现:对于总数而言,
m
⟹
m
2
m\Longrightarrow\frac{m}{2}
m⟹2m并不会改变最终的
s
u
m
sum
sum,只会增加晚上的加数
a
n
s
ans
ans。
最大的加数
a
n
s
ans
ans增速为
2
x
2^x
2x指数增长,此时天数最少
但是要注意,对于每天的加数
a
n
s
ans
ans而言,这是一个非严格递增数列,输出的值为加数
a
n
s
ans
ans的差值(大于等于0)。
计算时,最后一天的加数
a
n
s
ans
ans是用
n
−
2
i
+
1
n-2^i+1
n−2i+1计算得出,有可能小于前一天的
a
n
s
ans
ans,记得最后处理一下让最后一天的加数
a
n
s
ans
ans大于等于前一天的就可以
LL ans[100];
int main(){
int t;
cin>>t;
LL n,nw,pre,tt;
while(t--){
cin>>n;
ans[1]=1;
nw=1;tt=2;
for(int i=1;i<=50;i++){
ans[i+1]=tt;
if(tt*2-1>=n){
ans[i+1]=n-tt+1;
nw=i;
break;
}
tt*=2ll;
}
cout<<nw<<endl;
if(ans[nw+1]<ans[nw]){
tt=ans[nw+1]+ans[nw];
ans[nw]=tt/2;
ans[nw+1]=tt/2+tt%2;
}
for(int i=2;i<=nw+1;i++){
cout<<ans[i]-ans[i-1]<<" ";
}
cout<<endl;
}
}