求定积分的不太常见的方法

1、周期函数积分的性质

周期函数积分性质:
  f ( x + T ) = f ( x ) \ f(x+T)=f(x)  f(x+T)=f(x),则 g [ f ( x ) ] = g ( f ( x + T ) ) g[f(x)]=g(f(x+T)) g[f(x)]=g(f(x+T)) ∫ a a + t = ∫ 0 t \int_a^{a+t}=\int_0^t aa+t=0t.
例:
设函数 f ( x ) f(x) f(x)为连续函数, a , b a,b a,b为常数,且 a 2 + b 2 ≠ 0 a^2+b^2\ne0 a2+b2=0, ∫ 0 2 π f ( a cos ⁡ x + b sin ⁡ x ) d x = A ∫ − π 2 π 2 f ( a 2 + b 2 sin ⁡ x ) d x \int_0^{2\pi}f(a\cos x+b\sin x)dx=A\int_{-\frac \pi 2}^{\frac \pi 2}f(\sqrt {a^2+b^2}\sin x)dx 02πf(acosx+bsinx)dx=A2π2πf(a2+b2 sinx)dx求常数A.
思路:
先化简,
∫ 0 2 π f ( a cos ⁡ x + b sin ⁡ x ) d x = ∫ 0 2 π f ( a 2 + b 2 sin ⁡ ( x + φ ) ) d x ( 平 移 不 改 变 函 数 形 状 ) = 2 ∫ − π 2 π 2 f ( a 2 + b 2 sin ⁡ x ) d x \int_0^{2\pi}f(a\cos x+b\sin x)dx=\int_0^{2\pi}f(\sqrt {a^2+b^2}\sin (x+\varphi))dx(平移不改变函数形状)=2\int_{-\frac \pi 2}^{\frac \pi 2}f(\sqrt {a^2+b^2}\sin x)dx 02πf(acosx+bsinx)dx=02πf(a2+b2 sin(x+φ))dx()=22π2πf(a2+b2 sinx)dx
所以
A n s w e r : A = 2. Answer:A=2. AnswerA=2.

2、换元思路在证明中的应用

例:
设函数 f ( x ) f(x) f(x)为连续函数,证明: ∬ D f ( x + y ) d x d y = ∫ − 2 2 f ( t ) 2 − t 2 d t \iint_Df(x+y)dxdy=\int_{-\sqrt2}^{\sqrt2}f(t)\sqrt{2-t^2}dt Df(x+y)dxdy=2 2 f(t)2t2 dt其中 D : x 2 + y 2 ⩽ 1. D:x^2+y^2\leqslant1. D:x2+y21.
证明思路:
首先,我们可以考虑是使用令 x + y = u x+y=u x+y=u,但是由线性代数的知识我们知道,一个式子是无法完成还原的,所以必须找到第二个式子,第二个式子哪里来的呢?猜一下列出一个 x − y = v x-y=v xy=v
于是 x + y = t x − y = v \begin{alignedat}{2} &x+&y = t \\ &x-&y = v \end{alignedat} x+xy=ty=v根据换元后的推理,稍加计算就可以的到结论。计算步骤如下:
x = u + v 2 , y = u − v 2 x=\cfrac {u+v} 2,y=\cfrac {u-v} 2 x=2u+vy=2uv J = ∣ ∂ ( x , y ) ∂ ( u , v ) ∣ = ∣ 1 2     1 2 1 2 − 1 2 ∣ = − 1 2 J=\biggm\vert\cfrac {\partial(x,y)} {\partial(u,v)}\biggm\vert=\biggm\vert\begin{matrix} \cfrac 1 2 &\ \ \ \cfrac 1 2 \\ \cfrac 1 2 & -\cfrac 1 2 \end{matrix}\biggm\vert=-\cfrac 1 2 J=(u,v)(x,y)=2121   2121=21
积分区域化简后 D u v : u 2 + v 2 ⩽ 2 D_{uv}:u^2+v^2\leqslant2 Duv:u2+v22原积分式为: ∬ D u v − 1 2 f ( u ) d u d v = ∫ − 2 2 − 1 2 f ( u ) ∫ − 2 − u 2 2 − u 2 d v = ∫ − 2 2 f ( u ) 2 − u 2 d t \iint_{D_{uv}}-\cfrac 1 2f(u)dudv=\int_{-\sqrt2}^{\sqrt2}-\cfrac 1 2f(u)\int_{-\sqrt{2-u^2}}^{\sqrt{2-u^2}}dv=\int_{-\sqrt2}^{\sqrt2}f(u)\sqrt{2-u^2}dt Duv21f(u)dudv=2 2 21f(u)2u2 2u2 dv=2 2 f(u)2u2 dt
完成证明!!!

3、求解极限的积分法(另类篇)

例:
求解 lim ⁡ n → ∞ n ! n ln ⁡ n \lim\limits_{n\rightarrow\infin}\sqrt[n\ln n]{n!} nlimnlnnn!
思路一:
求解本题第一思路就是化简转化成 e x e^x ex问题,具体内容如下:
在这里插入图片描述
我主要产生问题求解无法进行的原因在于,由于求解积分时不能分子分母互换,但是求极限的时候用倒数可以求解更加方便。
之后是洛必达法则。
但是这个题目第二个求解思路还是比较奇特的,是用积分和放缩相结合的方法。
思路二:
我们求解极限 lim ⁡ n → ∞ ln ⁡ 1 + ln ⁡ 2 + ln ⁡ 3 ⋯ + ln ⁡ n n ln ⁡ n \lim\limits_{n\rightarrow\infin}\cfrac{\ln 1+\ln 2+\ln 3\cdots+\ln n }{n\ln n} nlimnlnnln1+ln2+ln3+lnn单调函数放缩
在这里插入图片描述
在这里插入图片描述

4、构造递推式求解定积分

遇到一些三角函数问题,我们没有办法变形,或者变形完成之后,积分式的结构会变得更加复杂,所以我们可以尝试使用构造递推公式的方法找到问题的解决方法。
例:
求解 ∫ 0 2 π sin ⁡ ( 2 n + 1 ) x sin ⁡ x d x \int_0^{2\pi}\cfrac{\sin(2n+1)x}{\sin x}dx 02πsinxsin(2n+1)xdx
分析思路:首先考虑变形,发现变形没办法处理,要么很复杂,要么没办法求解,所以我们可以考虑使用递推公式求解。
     sin ⁡ ( 2 n + 1 ) x \ \ \ \ \sin (2n+1)x     sin(2n+1)x
= sin ⁡ [ ( 2 n − 1 + 2 ) x ] =\sin[(2n-1+2)x] =sin[(2n1+2)x]
= sin ⁡ [ ( 2 n − 1 ) x ] cos ⁡ 2 x + cos ⁡ [ ( 2 n − 1 ) x ] sin ⁡ 2 x =\sin[(2n-1)x]\cos2x+\cos[(2n-1)x]\sin 2x =sin[(2n1)x]cos2x+cos[(2n1)x]sin2x
= sin ⁡ [ ( 2 n − 1 ) x ] ( 1 − sin ⁡ 2 x ) + cos ⁡ [ ( 2 n − 1 ) x ] sin ⁡ x cos ⁡ x =\sin[(2n-1)x](1-\sin^2 x)+\cos[(2n-1)x]\sin x\cos x =sin[(2n1)x](1sin2x)+cos[(2n1)x]sinxcosx
= sin ⁡ [ ( 2 n − 1 ) x ] + sin ⁡ x ( − sin ⁡ [ ( 2 n − 1 ) x ] sin ⁡ x + cos ⁡ [ ( 2 n − 1 ) x ] cos ⁡ x ) =\sin[(2n-1)x]+\sin x(-\sin [(2n-1)x]\sin x+\cos[(2n-1)x]\cos x) =sin[(2n1)x]+sinx(sin[(2n1)x]sinx+cos[(2n1)x]cosx)
= sin ⁡ [ ( 2 n − 1 ) x ] + sin ⁡ x cos ⁡ 2 n x =\sin[(2n-1)x]+\sin x\cos 2nx =sin[(2n1)x]+sinxcos2nx
递推公式就很明显了;

∫ 0 2 π sin ⁡ ( 2 n + 1 ) x sin ⁡ x d x = ∫ 0 2 π sin ⁡ ( 2 n − 1 ) x sin ⁡ x d x + 0 \int_0^{2\pi}\cfrac{\sin(2n+1)x}{\sin x}dx=\int_0^{2\pi}\cfrac{\sin(2n-1)x}{\sin x}dx+0 02πsinxsin(2n+1)xdx=02πsinxsin(2n1)xdx+0
a n = a n − 1 = ⋯ = a 0 = ∫ 0 2 π sin ⁡ x sin ⁡ x d x = 2 π a_n=a_{n-1}=\cdots=a_0=\int_0^{2\pi}\cfrac{\sin x}{\sin x}dx=2\pi an=an1==a0=02πsinxsinxdx=2π

5、求解积分的稍微特别的经典方法(IJ函数法)

例1:
求解 ∫ 0 π 4 sin ⁡ x 1 + sin ⁡ x d x \int_0^{\frac \pi 4}\cfrac {\sin x} {1+\sin x}dx 04π1+sinxsinxdx
解法:
在这里插入图片描述
构造一个函数 J J J,函数 J J J的特点是分母,分母与 I I I函数正好能配凑 cos ⁡ 2 x + sin ⁡ 2 = 1 \cos^2 x +\sin^2 = 1 cos2x+sin2=1分子之间存在相互关系,最后导出结果。那么我就要提出疑问了?如果 I I I函数与 J J J函数也都求不出来怎么处理,并行化简,发现又相似或者可消元之处则停止。
本体的逻辑思路是基于配凑失败,分布函数变形失败后,产生的联想。
例2:
求解: ∫ 0 π 4 e x ( 1 + sin ⁡ x ) 1 + cos ⁡ x d x \int_0^{\frac \pi 4}\cfrac {e^x(1+\sin x)}{1+\cos x}dx 04π1+cosxex(1+sinx)dx
本例中我们使用与上面相同的方法,列出 J J J函数 ∫ 0 π 4 e x ( 1 + sin ⁡ x ) 1 − cos ⁡ x d x \int_0^{\frac \pi 4}\cfrac {e^x(1+\sin x)}{1-\cos x}dx 04π1cosxex(1+sinx)dx
导出如下方程:
在这里插入图片描述
思路提要:整体就是在使用变形和整理发现貌似行不通而使用的方法,暂且叫做 I J IJ IJ函数法
例3:
求解 I = ∫ 0 + ∞ x 2 1 + x 4 d x I=\int_0^{+\infin}\cfrac{x^2}{1+x^4}dx I=0+1+x4x2dx
求解这个题目分母是不能进行因式分解,所以我们使用换元法求解:
方法如下:这是一种另类的换元,是除了三角换元,升(降)换元等一些常规换元法,我姑且称它为倒数换元。在这里插入图片描述
第一点:本题使用的是倒数换元法。
第二点:由于本题为定积分,再还原之后,结果没有差异,但是求不定积分换元之后结果就会发生差异,必须换元后再换回来才能与原函数相等。
第三点:换元后一定要注意,求出来的 I I I的结果,不一定是原函数,但是结果是相同的。
例4:
求解 I = ∫ 1 1 + x 2 + x 4 d x I= \int\cfrac 1 {1+x^2+x^4}dx I=1+x2+x41dx
本题与上一题相同,都属于分母不能分解的,我们还是尝试与上式相同的方法,但是换元后生成的 I I I函数,不能想前面定积分一样,必须形成 I 、 J I、J IJ的函数方程。进而求解,方法如下:
在这里插入图片描述
例4:
求解 ∫ 0 + ∞ ln ⁡ x x 2 + a 2 d x \int_0^{+\infin}\cfrac {\ln x}{x^2+a^2}dx 0+x2+a2lnxdx
思路一:求解本题我们的第一反应是看见利用 x = a tan ⁡ t x = a\tan t x=atant的三角换元方法,但是如下: 原 式 = ∫ 0 π 2 ln ⁡ a tan ⁡ x a d x = ∫ 0 π 2 ln ⁡ a sin ⁡ x − ln ⁡ cos ⁡ x a d x 原式=\int_0^{\frac \pi 2}\cfrac {\ln a\tan x}{a}dx=\int_0^{\frac \pi 2}\cfrac {\ln a\sin x -\ln\cos x}{a}dx =02πalnatanxdx=02πalnasinxlncosxdx
根据 ∫ a b f ( sin ⁡ x ) d x = ∫ π 2 − a π 2 − b f ( cos ⁡ x ) d x \int_a^bf(\sin x)dx=\int_{\frac \pi 2 -a}^{\frac \pi 2 -b}f(\cos x)dx abf(sinx)dx=2πa2πbf(cosx)dx
可求得原式可转化成 ∫ 0 π 2 ln ⁡ a a d x = π ln ⁡ a 2 a \int_0^{\frac \pi 2}\cfrac {\ln a}{a}dx=\cfrac {\pi\ln a}{2a} 02πalnadx=2aπlna
这个题目是顺序思路思考问题。
思路二:基于上式的思路,我们也可以使用 x = π 2 − t x=\cfrac \pi 2-t x=2πt的方法,解法如下:
在这里插入图片描述
思路三:求解本题的第三个思路,倒数代换法求解:
在这里插入图片描述
例5:
求解 ∫ 0 1 ln ⁡ ( 1 + t ) t 2 + 1 d t \int_0^1\cfrac {\ln (1+t)} {t^2+1}dt 01t2+1ln(1+t)dt
思路一、思路二:与上面的方法基本类似。
思路三:我们提出一种 α \alpha α方法:
在这里插入图片描述
α \alpha α方法的核心思想是整理一个不容易求积分的函数转化成容易求积分的函数,在此例中我们将 ln ⁡ ( 1 + a x ) \ln (1+ax) ln(1+ax)转化成 α \alpha α的函数。中间还涉及一点配凑法。
例6:
同型函数求解:
在这里插入图片描述
例7:
求解 ∫ 1 + x cos ⁡ x x ( 1 + x e sin ⁡ x ) d x \int\cfrac {1+x\cos x}{x(1+xe^{\sin x})}dx x(1+xesinx)1+xcosxdx
解决方法,观察本题的思路,我们发现,分子分母都非常复杂,所以我们尝试使用构造函数的方法解决问题,构造函数的技巧是往往使用 ln ⁡ \ln ln函数。
在这里插入图片描述

6、利用区间再现公式

https://blog.csdn.net/weixin_45008173/article/details/104370378

7、加减拆分有理式

例: 求解 ∫ 1 1 + t 4 d t \int\cfrac 1 {1+t^4}dt 1+t41dt
思路分析,拆分这种分母利用积分的分解因式公式不太好想,这里介绍一种配凑方法如下所示,在这里插入图片描述
在这里插入图片描述
但是以上这种解法,过于复杂,我们考虑用 I J IJ IJ函数方法的变体,配凑 t 2 1 + t 2 \cfrac {t^2}{1+t^2} 1+t2t2,方法如下:
在这里插入图片描述在这里插入图片描述
这种做法我也觉得挺神奇的,不过他让我意识到两个问题:
1、常数的作用
2、常数的处理方法,常数并非用+1、-1这样简单的消除,也可以通过乘除这种方式。

我突然间想起来我之间见过的一个定积分题目
已知: I = ∫ a b sin ⁡ x d x I = \int_a^b\sin xdx I=absinxdx,我们已经求出积分式 f ( x ) = u ( x + sin ⁡ 2 x ) f(x)=u(x+\sin2x) f(x)=u(x+sin2x)其实已经相当于求出了原积分,因为 sin ⁡ 2 x \sin 2x sin2x只需在原积分式的前面乘2,后面将 d x dx dx配成 d 2 x d2x d2x这连个就一样了,这也是一种比较神奇的同型函数处理方法。

8、补充公式

∫ a b f ( sin ⁡ x ) d x = ∫ a b f ( cos ⁡ x ) d x \int_a^bf(\sin x)dx=\int_a^bf(\cos x)dx abf(sinx)dx=abf(cosx)dx ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( x ) d x \int_0^{\pi}xf(\sin x)dx=\cfrac {\pi} 2\int_0^\pi f(x)dx 0πxf(sinx)dx=2π0πf(x)dx ∑ k = 1 n cos ⁡ k x = sin ⁡ ( n + 1 2 ) x − sin ⁡ 1 2 x sin ⁡ 1 2 x \sum_{k=1}^n\cos kx = \cfrac {\sin(n+\cfrac 1 2 )x-\sin \cfrac 1 2x}{\sin \cfrac {1}{2}x} k=1ncoskx=sin21xsin(n+21)xsin21x ∑ k = 1 n sin ⁡ k x = cos ⁡ 1 2 x − cos ⁡ ( n + 1 2 ) x sin ⁡ 1 2 x \sum_{k=1}^n\sin kx=\cfrac {\cos \cfrac 1 2 x-\cos (n+\cfrac 1 2 )x}{\sin \cfrac {1}{2}x} k=1nsinkx=sin21xcos21xcos(n+21)x

  • 4
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值