刷题
332.重新安排行程
题目:给定一个机票的字符串二维数组 [from, to],子数组中的两个成员分别表示飞机出发和降落的机场地点,对该行程进行重新规划排序。所有这些机票都属于一个从 JFK(肯尼迪国际机场)出发的先生,所以该行程必须从 JFK 开始。
提示:
-
如果存在多种有效的行程,请你按字符自然排序返回最小的行程组合。例如,行程 ["JFK", "LGA"] 与 ["JFK", "LGB"] 相比就更小,排序更靠前
-
所有的机场都用三个大写字母表示(机场代码)。
-
假定所有机票至少存在一种合理的行程。
-
所有的机票必须都用一次 且 只能用一次。
示例 1:
-
输入:[["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
-
输出:["JFK", "MUC", "LHR", "SFO", "SJC"]
示例 2:
-
输入:[["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
-
输出:["JFK","ATL","JFK","SFO","ATL","SFO"]
-
解释:另一种有效的行程是 ["JFK","SFO","ATL","JFK","ATL","SFO"]。但是它自然排序更大更靠后。
思路及实现
直觉上来看 这道题和回溯法没有什么关系,更像是图论中的深度优先搜索。
实际上确实是深搜,但这是深搜中使用了回溯的例子,在查找路径的时候,如果不回溯,怎么能查到目标路径呢。
所以倾向于说本题应该使用回溯法,其实深搜一般都使用了回溯法的思路,在图论系列中会再详细讲解深搜。
这里就是先给大家拓展一下,原来回溯法还可以这么玩!
这道题目有几个难点:
-
一个行程中,如果航班处理不好容易变成一个圈,成为死循环
-
有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
-
使用回溯法(也可以说深搜) 的话,那么终止条件是什么呢?
-
搜索的过程中,如何遍历一个机场所对应的所有机场。
如何理解死循环
对于死循环,我来举一个有重复机场的例子:
为什么要举这个例子呢,就是告诉大家,出发机场和到达机场也会重复的,如果在解题的过程中没有对集合元素处理好,就会死循环。
该记录映射关系
有多种解法,字母序靠前排在前面,让很多同学望而退步,如何该记录映射关系呢 ?
一个机场映射多个机场,机场之间要靠字母序排列,一个机场映射多个机场,可以使用map,如果让多个机场之间再有顺序的话,就是用map 或者 set。
这样存放映射关系可以定义为 unordered_map<string, multiset<string>> targets
或者 unordered_map<string, map<string, int>> targets
。
含义如下:
map<string, set> targets:map<出发机场, 到达机场的集合> targets
map<string, map<string, int>> targets:map<出发机场, map<到达机场, 航班次数>> targets
这两个结构,我选择了后者,因为如果使用map<string, set<string>> targets
遍历set的时候,不能删除元素,一旦删除元素,迭代器就失效了。
再说一下为什么一定要增删元素呢,正如开篇我给出的图中所示,出发机场和到达机场是会重复的,搜索的过程没及时删除目的机场就会死循环。
所以搜索的过程中就是要不断的删set里的元素,那么推荐使用map<string, map<string, int>> targets
。
在遍历 map<出发机场, map<到达机场, 航班次数>> targets
的过程中,可以使用"航班次数"这个字段的数字做相应的增减,来标记到达机场是否使用过了。
如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了,而不用对集合做删除元素或者增加元素的操作。
相当于说我不删,我就做一个标记!
回溯法
本题以输入:[["JFK", "KUL"], ["JFK", "NRT"], ["NRT", "JFK"]为例,抽象为树形结构如下:
开始回溯三部曲讲解:
-
递归函数参数
在讲解映射关系的时候,已经讲过了,使用map<string, map<string, int>> targets;
来记录航班的映射关系,我定义为全局变量。
当然把参数放进函数里传进去也是可以的,我是尽量控制函数里参数的长度。
参数里还需要ticketNum,表示有多少个航班(终止条件会用上)。
注意函数返回值我用的是bool!
我们之前讲解回溯算法的时候,一般函数返回值都是void,这次为什么是bool呢?
因为我们只需要找到一个行程,就是在树形结构中唯一的一条通向叶子节点的路线,如图:
所以找到了这个叶子节点了直接返回。
-
递归终止条件
拿题目中的示例为例,输入: [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]] ,这是有4个航班,那么只要找出一种行程,行程里的机场个数是5就可以了。
所以终止条件是:我们回溯遍历的过程中,遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了。
-
单层搜索的逻辑
回溯的过程中,如何遍历一个机场所对应的所有机场呢?
这里刚刚说过,在选择映射函数的时候,不能选择map<string, set<string>> targets
, 因为一旦有元素增删set的迭代器就会失效,当然可能有牛逼的容器删除元素迭代器不会失效,这里就不在讨论了。
可以说本题既要找到一个对数据进行排序的容器,而且还要容易增删元素,迭代器还不能失效。
所以我选择了map<string, map<string, int>> targets
来做机场之间的映射。
可以看出 通过map<string, map<string, int>> targets
里的int字段来判断 这个集合里的机场是否使用过,这样避免了直接去删元素。
代码如下:
class Solution { private Deque<String> res; private Map<String, Map<String, Integer>> map; private boolean backTracking(int ticketNum){ if(res.size() == ticketNum + 1){ return true; } String last = res.getLast(); if(map.containsKey(last)){//防止出现null for(Map.Entry<String, Integer> target : map.get(last).entrySet()){ int count = target.getValue(); if(count > 0){ res.add(target.getKey()); target.setValue(count - 1); if(backTracking(ticketNum)) return true; res.removeLast(); target.setValue(count); } } } return false; } //map<出发机场, map<到达机场, 航班次数>> public List<String> findItinerary(List<List<String>> tickets) { map = new HashMap<String, Map<String, Integer>>(); res = new LinkedList<>(); for(List<String> t : tickets){ Map<String, Integer> temp; if(map.containsKey(t.get(0))){ temp = map.get(t.get(0)); temp.put(t.get(1), temp.getOrDefault(t.get(1), 0) + 1); }else{ temp = new TreeMap<>();//升序Map temp.put(t.get(1), 1); } map.put(t.get(0), temp); } res.add("JFK"); backTracking(tickets.size()); return new ArrayList<>(res); } }
/* 改进,主要变化在于将某点的所有终点变更为链表的形式,优点在于 1.添加终点时直接在对应位置添加节点,避免了TreeMap增元素时的频繁调整 2.同时每次对终点进行增加删除查找时直接通过下标操作,避免hashMap反复计算hash*/ class Solution { //key为起点,value是有序的终点的列表 Map<String, LinkedList<String>> ticketMap = new HashMap<>(); LinkedList<String> result = new LinkedList<>(); int total; public List<String> findItinerary(List<List<String>> tickets) { total = tickets.size() + 1; //遍历tickets,存入ticketMap中 for (List<String> ticket : tickets) { addNew(ticket.get(0), ticket.get(1)); } deal("JFK"); return result; } boolean deal(String currentLocation) { result.add(currentLocation); //机票全部用完,找到最小字符路径 if (result.size() == total) { return true; } //当前位置的终点列表 LinkedList<String> targetLocations = ticketMap.get(currentLocation); //没有从当前位置出发的机票了,说明这条路走不通 if (targetLocations != null && !targetLocations.isEmpty()) { //终点列表中遍历到的终点 String targetLocation; //遍历从当前位置出发的机票 for (int i = 0; i < targetLocations.size(); i++) { targetLocation = targetLocations.get(i); //删除终点列表中当前的终点 targetLocations.remove(i); //递归 if (deal(targetLocation)) { return true; } //路线走不通,将机票重新加回去 targetLocations.add(i, targetLocation); result.removeLast(); } } return false; } /** * 在map中按照字典顺序添加新元素 * * @param start 起点 * @param end 终点 */ void addNew(String start, String end) { LinkedList<String> startAllEnd = ticketMap.getOrDefault(start, new LinkedList<>()); if (!startAllEnd.isEmpty()) { for (int i = 0; i < startAllEnd.size(); i++) { if (end.compareTo(startAllEnd.get(i)) < 0) { startAllEnd.add(i, end); return; } } startAllEnd.add(startAllEnd.size(), end); } else { startAllEnd.add(end); ticketMap.put(start, startAllEnd); } } }
总结
本题其实可以算是一道hard的题目了,关于本题的难点我在文中已经列出了。
如果单纯的回溯搜索(深搜)并不难,难还难在容器的选择和使用上。
本题其实是一道深度优先搜索的题目,但是我完全使用回溯法的思路来讲解这道题题目,算是给大家拓展一下思维方式,其实深搜和回溯也是分不开的,毕竟最终都是用递归。
51.N皇后
题目:n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。
示例 1:
-
输入:n = 4
-
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
-
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
-
输入:n = 1
-
输出:[["Q"]]
思路及实现
都知道n皇后问题是回溯算法解决的经典问题,但是用回溯解决多了组合、切割、子集、排列问题之后,遇到这种二维矩阵还会有点不知所措。
首先来看一下皇后们的约束条件:
-
不能同行
-
不能同列
-
不能同斜线
确定完约束条件,来看看究竟要怎么去搜索皇后们的位置,其实搜索皇后的位置,可以抽象为一棵树。
下面我用一个 3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:
从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。
那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。
回溯三部曲
-
递归函数参数
我依然是定义全局变量二维数组result来记录最终结果。
参数n是棋盘的大小,然后用row来记录当前遍历到棋盘的第几层了。
-
递归终止条件
在如下树形结构中:
可以看出,当递归到棋盘最底层(也就是叶子节点)的时候,就可以收集结果并返回了。
-
单层搜索的逻辑
递归深度就是row控制棋盘的行,每一层里for循环的col控制棋盘的列,一行一列,确定了放置皇后的位置。
每次都是要从新的一行的起始位置开始搜,所以都是从0开始。
-
验证棋盘是否合法
按照如下标准去重:
-
不能同行
-
不能同列
-
不能同斜线 (45度和135度角)
代码如下:
class Solution { List<List<String>> res = new ArrayList<>(); public List<List<String>> solveNQueens(int n) { char[][] chessboard = new char[n][n]; for (char[] c : chessboard) { Arrays.fill(c, '.'); } backTrack(n, 0, chessboard); return res; } public void backTrack(int n, int row, char[][] chessboard) { if (row == n) { res.add(Array2List(chessboard)); return; } for (int col = 0;col < n; ++col) { if (isValid (row, col, n, chessboard)) { chessboard[row][col] = 'Q'; backTrack(n, row+1, chessboard); chessboard[row][col] = '.'; } } } public List Array2List(char[][] chessboard) { List<String> list = new ArrayList<>(); for (char[] c : chessboard) { list.add(String.copyValueOf(c)); } return list; } public boolean isValid(int row, int col, int n, char[][] chessboard) { // 检查列 for (int i=0; i<row; ++i) { // 相当于剪枝 if (chessboard[i][col] == 'Q') { return false; } } // 检查45度对角线 for (int i=row-1, j=col-1; i>=0 && j>=0; i--, j--) { if (chessboard[i][j] == 'Q') { return false; } } // 检查135度对角线 for (int i=row-1, j=col+1; i>=0 && j<=n-1; i--, j++) { if (chessboard[i][j] == 'Q') { return false; } } return true; } }
37.解数独
题目:编写一个程序,通过填充空格来解决数独问题。
一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次。 数字 1-9 在每一列只能出现一次。 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。 空白格用 '.' 表示。
一个数独。
答案被标成红色。
提示:
-
给定的数独序列只包含数字 1-9 和字符 '.' 。
-
你可以假设给定的数独只有唯一解。
-
给定数独永远是 9x9 形式的。
思路及实现
本题中棋盘的每一个位置都要放一个数字(而N皇后是一行只放一个皇后),并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。
因为这个树形结构太大了,我抽取一部分,如图所示:
回溯三部曲
-
递归函数以及参数
递归函数的返回值需要是bool类型,为什么呢?
因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径,所以需要使用bool返回值。
-
递归终止条件
本题递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。
不用终止条件会不会死循环?
递归的下一层的棋盘一定比上一层的棋盘多一个数,等数填满了棋盘自然就终止(填满当然好了,说明找到结果了),所以不需要终止条件!
那么有没有永远填不满的情况呢?
这个问题我在递归单层搜索逻辑里再来讲!
-
递归单层搜索逻辑
在树形图中可以看出我们需要的是一个二维的递归(也就是两个for循环嵌套着递归)
一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!
如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解!
那么会直接返回, 这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!
判断棋盘是否合法
判断棋盘是否合法有如下三个维度:
-
同行是否重复
-
同列是否重复
-
9宫格里是否重复
代码如下:
class Solution { public void solveSudoku(char[][] board) { solveSudokuHelper(board); } private boolean solveSudokuHelper(char[][] board){ //「一个for循环遍历棋盘的行,一个for循环遍历棋盘的列, // 一行一列确定下来之后,递归遍历这个位置放9个数字的可能性!」 for (int i = 0; i < 9; i++){ // 遍历行 for (int j = 0; j < 9; j++){ // 遍历列 if (board[i][j] != '.'){ // 跳过原始数字 continue; } for (char k = '1'; k <= '9'; k++){ // (i, j) 这个位置放k是否合适 if (isValidSudoku(i, j, k, board)){ board[i][j] = k; if (solveSudokuHelper(board)){ // 如果找到合适一组立刻返回 return true; } board[i][j] = '.'; } } // 9个数都试完了,都不行,那么就返回false return false; // 因为如果一行一列确定下来了,这里尝试了9个数都不行,说明这个棋盘找不到解决数独问题的解! // 那么会直接返回, 「这也就是为什么没有终止条件也不会永远填不满棋盘而无限递归下去!」 } } // 遍历完没有返回false,说明找到了合适棋盘位置了 return true; } /** * 判断棋盘是否合法有如下三个维度: * 同行是否重复 * 同列是否重复 * 9宫格里是否重复 */ private boolean isValidSudoku(int row, int col, char val, char[][] board){ // 同行是否重复 for (int i = 0; i < 9; i++){ if (board[row][i] == val){ return false; } } // 同列是否重复 for (int j = 0; j < 9; j++){ if (board[j][col] == val){ return false; } } // 9宫格里是否重复 int startRow = (row / 3) * 3; int startCol = (col / 3) * 3; for (int i = startRow; i < startRow + 3; i++){ for (int j = startCol; j < startCol + 3; j++){ if (board[i][j] == val){ return false; } } } return true; } }
回溯总结
文章链接:代码随想录 (programmercarl.com)
回溯法理论基础
回溯是递归的副产品,只要有递归就会有回溯,所以回溯法也经常和二叉树遍历,深度优先搜索混在一起,因为这两种方式都是用了递归。
回溯法就是暴力搜索,并不是什么高效的算法,最多再剪枝一下。
回溯算法能解决如下问题:
-
组合问题:N个数里面按一定规则找出k个数的集合
-
排列问题:N个数按一定规则全排列,有几种排列方式
-
切割问题:一个字符串按一定规则有几种切割方式
-
子集问题:一个N个数的集合里有多少符合条件的子集
-
棋盘问题:N皇后,解数独等等
我在回溯算法系列讲解中就按照这个顺序给大家讲解,可以说深入浅出,步步到位。
回溯法确实不好理解,所以需要把回溯法抽象为一个图形来理解就容易多了,在后面的每一道回溯法的题目我都将遍历过程抽象为树形结构方便大家的理解。
回溯法的模板:
void backtracking(参数) { if (终止条件) { 存放结果; return; } for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) { 处理节点; backtracking(路径,选择列表); // 递归 回溯,撤销处理结果 } }
事实证明这个模板会伴随整个回溯法系列!
组合问题
组合问题
在文中开始的时候给大家列举k层for循环例子,进而得出都是同样是暴力解法,为什么要用回溯法!
此时大家应该深有体会回溯法的魅力,用递归控制for循环嵌套的数量!
本题我把回溯问题抽象为树形结构,如题:
可以直观的看出其搜索的过程:for循环横向遍历,递归纵向遍历,回溯不断调整结果集,这个理念贯穿整个回溯法系列,也是我做了很多回溯的题目,不断摸索其规律才总结出来的。
对于回溯法的整体框架,网上搜的文章这块都说不清楚,按照天上掉下来的代码对着讲解,不知道究竟是怎么来的,也不知道为什么要这么写。
所以,录友们刚开始学回溯法,起跑姿势就很标准了!
优化回溯算法只有剪枝一种方法,树形结构如图:
大家可以一目了然剪的究竟是哪里。
回溯算法:求组合问题!剪枝精髓是:for循环在寻找起点的时候要有一个范围,如果这个起点到集合终止之间的元素已经不够题目要求的k个元素了,就没有必要搜索了。
在for循环上做剪枝操作是回溯法剪枝的常见套路! 后面的题目还会经常用到。
组合总和
组合总和(一)
在回溯算法:求组合总和!中,相当于 回溯算法:求组合问题!加了一个元素总和的限制。
树形结构如图:
整体思路还是一样的,本题的剪枝会好想一些,即:已选元素总和如果已经大于n(题中要求的和)了,那么往后遍历就没有意义了,直接剪掉,如图:
在本题中,依然还可以有一个剪枝,就是回溯算法:组合问题再剪剪枝中提到的,对for循环选择的起始范围的剪枝。
所以剪枝的代码可以在for循环加上 i <= 9 - (k - path.size()) + 1
的限制!
组合总和(二)
区别是:本题没有数量要求,可以无限重复,但是有总和的限制,所以间接的也是有个数的限制。
不少同学都是看到可以重复选择,就义无反顾的把startIndex去掉了。
本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?
我举过例子,如果是一个集合来求组合的话,就需要startIndex,例如:回溯算法:求组合问题,回溯算法:求组合总和。
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:回溯算法:电话号码的字母组合
注意以上我只是说求组合的情况,如果是排列问题,又是另一套分析的套路。
树形结构如下:
最后还给出了本题的剪枝优化,如下:
for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++)
1
优化后树形结构如下:
组合总和(三)
集合元素会有重复,但要求解集不能包含重复的组合。
所以难就难在去重问题上了。
这个去重问题,相信做过的录友都知道有多么的晦涩难懂。网上的题解一般就说“去掉重复”,但说不清怎么个去重,代码一甩就完事了。
为了讲解这个去重问题,Carl自创了两个词汇,“树枝去重”和“树层去重”。
都知道组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上“使用过”,一个维度是同一树层上“使用过”。没有理解这两个层面上的“使用过” 是造成大家没有彻底理解去重的根本原因。
我在图中将used的变化用橘黄色标注上,可以看出在candidates[i] == candidates[i - 1]相同的情况下:
-
used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
-
used[i - 1] == false,说明同一树层candidates[i - 1]使用过
这块去重的逻辑很抽象,网上搜的题解基本没有能讲清楚的,如果大家之前思考过这个问题或者刷过这道题目,看到这里一定会感觉通透了很多!
对于去重,其实排列和子集问题也是一样的道理。
多个集合求组合
在回溯算法:电话号码的字母组合中,开始用多个集合来求组合,还是熟悉的模板题目,但是有一些细节。
因为本题每一个数字代表的是不同集合,也就是求不同集合之间的组合,而回溯算法:求组合问题!和回溯算法:求组合总和!都是是求同一个集合中的组合!
树形结构如下:
如果大家在现场面试的时候,一定要注意各种输入异常的情况,例如本题输入1 * #按键。
其实本题不算难,但也处处是细节,还是要反复琢磨。
切割问题
在回溯算法:分割回文串中,我们开始讲解切割问题,虽然最后代码看起来好像是一道模板题,但是从分析到学会套用这个模板,是比较难的。
我列出如下几个难点:
-
切割问题其实类似组合问题
-
如何模拟那些切割线
-
切割问题中递归如何终止
-
在递归循环中如何截取子串
-
如何判断回文
如果想到了用求解组合问题的思路来解决 切割问题本题就成功一大半了,接下来就可以对着模板照葫芦画瓢。
但后序如何模拟切割线,如何终止,如何截取子串,其实都不好想,最后判断回文算是最简单的了。
所以本题应该是一个道hard题目了。
除了这些难点,本题还有细节,例如:切割过的地方不能重复切割所以递归函数需要传入i + 1。
树形结构如下:
子集问题
子集问题(一)
在回溯算法:求子集问题!中讲解了子集问题,在树形结构中子集问题是要收集所有节点的结果,而组合问题是收集叶子节点的结果。
如图:
认清这个本质之后,今天的题目就是一道模板题了。
本题其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了,本来我们就要遍历整棵树。
有的同学可能担心不写终止条件会不会无限递归?
并不会,因为每次递归的下一层就是从i+1开始的。
如果要写终止条件,注意:result.push_back(path);
要放在终止条件的上面,如下:
result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉结果 if (startIndex >= nums.size()) { // 终止条件可以不加 return; }
子集问题(二)
在回溯算法:求子集问题(二)中,开始针对子集问题进行去重。
本题就是回溯算法:求子集问题!的基础上加上了去重,去重我们在回溯算法:求组合总和(三)也讲过了,一样的套路。
树形结构如下:
递增子序列
在回溯算法:递增子序列中,处处都能看到子集的身影,但处处是陷阱,值得好好琢磨琢磨!
树形结构如下:
很多同学都会把这道题目和回溯算法:求子集问题(二)混在一起。
回溯算法:求子集问题(二)也可以使用set针对同一父节点本层去重,但子集问题一定要排序,为什么呢?
我用没有排序的集合{2,1,2,2}来举个例子画一个图,如下:
相信这个图胜过千言万语的解释了。
排列问题
排列问题(一)
回溯算法:排列问题!又不一样了。
排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
如图:
大家此时可以感受出排列问题的不同:
-
每层都是从0开始搜索而不是startIndex
-
需要used数组记录path里都放了哪些元素了
排列问题(二)
排列问题也要去重了,在回溯算法:排列问题(二)中又一次强调了“树层去重”和“树枝去重”。
树形结构如下:
这道题目神奇的地方就是used[i - 1] == false也可以,used[i - 1] == true也可以!
我就用输入: [1,1,1] 来举一个例子。
树层上去重(used[i - 1] == false),的树形结构如下:
树枝上去重(used[i - 1] == true)的树型结构如下:
可以清晰的看到使用(used[i - 1] == false),即树层去重,效率更高!
本题used数组即是记录path里都放了哪些元素,同时也用来去重,一举两得。
去重问题
以上我都是统一使用used数组来去重的,其实使用set也可以用来去重!
在本周小结!(回溯算法系列三)续集 中给出了子集、组合、排列问题使用set来去重的解法以及具体代码,并纠正一些同学的常见错误写法。
同时详细分析了 使用used数组去重 和 使用set去重 两种写法的性能差异:
使用set去重的版本相对于used数组的版本效率都要低很多,大家在leetcode上提交,能明显发现。
原因在回溯算法:递增子序列中也分析过,主要是因为程序运行的时候对unordered_set 频繁的insert,unordered_set需要做哈希映射(也就是把key通过hash function映射为唯一的哈希值)相对费时间,而且insert的时候其底层的符号表也要做相应的扩充,也是费时的。
而使用used数组在时间复杂度上几乎没有额外负担!
使用set去重,不仅时间复杂度高了,空间复杂度也高了,在本周小结!(回溯算法系列三)中分析过,组合,子集,排列问题的空间复杂度都是O(n),但如果使用set去重,空间复杂度就变成了O(n^2),因为每一层递归都有一个set集合,系统栈空间是n,每一个空间都有set集合。
那有同学可能疑惑 用used数组也是占用O(n)的空间啊?
used数组可是全局变量,每层与每层之间公用一个used数组,所以空间复杂度是O(n + n),最终空间复杂度还是O(n)。
重新安排行程(图论额外拓展)
之前说过,有递归的地方就有回溯,深度优先搜索也是用递归来实现的,所以往往伴随着回溯。
在回溯算法:重新安排行程其实也算是图论里深搜的题目,但是我用回溯法的套路来讲解这道题目,算是给大家拓展一下思路,原来回溯法还可以这么玩!
以输入:[["JFK", "KUL"], ["JFK", "NRT"], ["NRT", "JFK"]为例,抽象为树形结构如下:
本题可以算是一道hard的题目了,关于本题的难点我在文中已经详细列出。
如果单纯的回溯搜索(深搜)并不难,难还难在容器的选择和使用上!
本题其实是一道深度优先搜索的题目,但是我完全使用回溯法的思路来讲解这道题题目,算是给大家拓展一下思维方式,其实深搜和回溯也是分不开的,毕竟最终都是用递归。
棋盘问题
N皇后问题
在回溯算法:N皇后问题中终于迎来了传说中的N皇后。
下面我用一个3 * 3 的棋盘,将搜索过程抽象为一棵树,如图:
从图中,可以看出,二维矩阵中矩阵的高就是这棵树的高度,矩阵的宽就是树形结构中每一个节点的宽度。
那么我们用皇后们的约束条件,来回溯搜索这棵树,只要搜索到了树的叶子节点,说明就找到了皇后们的合理位置了。
如果从来没有接触过N皇后问题的同学看着这样的题会感觉无从下手,可能知道要用回溯法,但也不知道该怎么去搜。
这里我明确给出了棋盘的宽度就是for循环的长度,递归的深度就是棋盘的高度,这样就可以套进回溯法的模板里了。
相信看完本篇回溯算法:N皇后问题也没那么难了,传说已经不是传说了。
解数独问题
在回溯算法:解数独中要征服回溯法的最后一道山峰。
解数独应该是棋盘很难的题目了,比N皇后还要复杂一些,但只要理解 “二维递归”这个过程,其实发现就没那么难了。
大家已经跟着「代码随想录」刷过了如下回溯法题目,例如:77.组合(组合问题)这些题目都是一维递归。
其中N皇后问题是因为每一行每一列只放一个皇后,只需要一层for循环遍历一行,递归来遍历列,然后一行一列确定皇后的唯一位置。
本题就不一样了,本题中棋盘的每一个位置都要放一个数字,并检查数字是否合法,解数独的树形结构要比N皇后更宽更深。
因为这个树形结构太大了,我抽取一部分,如图所示:
解数独可以说是非常难的题目了,如果还一直停留在一维递归的逻辑中,这道题目可以让大家瞬间崩溃。
所以我在回溯算法:解数独中开篇就提到了二维递归,这也是我自创词汇,希望可以帮助大家理解解数独的搜索过程。
一波分析之后,在看代码会发现其实也不难,唯一难点就是理解二维递归的思维逻辑。
这样,解数独这么难的问题也被我们攻克了。
性能分析
关于回溯算法的复杂度分析在网上的资料鱼龙混杂,一些所谓的经典面试书籍不讲回溯算法,算法书籍对这块也避而不谈,感觉就像是算法里模糊的边界。
所以这块就说一说我个人理解,对内容持开放态度,集思广益,欢迎大家来讨论!
以下在计算空间复杂度的时候我都把系统栈(不是数据结构里的栈)所占空间算进去。
子集问题分析:
-
时间复杂度:O(2^n),因为每一个元素的状态无外乎取与不取,所以时间复杂度为O(2^n)
-
空间复杂度:O(n),递归深度为n,所以系统栈所用空间为O(n),每一层递归所用的空间都是常数级别,注意代码里的result和path都是全局变量,就算是放在参数里,传的也是引用,并不会新申请内存空间,最终空间复杂度为O(n)
排列问题分析:
-
时间复杂度:O(n!),这个可以从排列的树形图中很明显发现,每一层节点为n,第二层每一个分支都延伸了n-1个分支,再往下又是n-2个分支,所以一直到叶子节点一共就是 n * n-1 * n-2 * ..... 1 = n!。
-
空间复杂度:O(n),和子集问题同理。
组合问题分析:
-
时间复杂度:O(2^n),组合问题其实就是一种子集的问题,所以组合问题最坏的情况,也不会超过子集问题的时间复杂度。
-
空间复杂度:O(n),和子集问题同理。
N皇后问题分析:
-
时间复杂度:O(n!) ,其实如果看树形图的话,直觉上是O(n^n),但皇后之间不能见面所以在搜索的过程中是有剪枝的,最差也就是O(n!),n!表示n * (n-1) * .... * 1。
-
空间复杂度:O(n),和子集问题同理。
解数独问题分析:
-
时间复杂度:O(9^m) , m是'.'的数目。
-
空间复杂度:O(n^2),递归的深度是n^2
一般说道回溯算法的复杂度,都说是指数级别的时间复杂度,这也算是一个概括吧!
总结
回溯专题汇聚为一张图:
这个图是莫非毛,所画,总结的非常好,分享给大家。