代码随想录算法训练营 | day57 动态规划 647.回文子串,516.最长回文子序列

刷题

647.回文子串

题目链接 | 文章讲解 | 视频讲解

题目:给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

  • 输入:"abc"

  • 输出:3

  • 解释:三个回文子串: "a", "b", "c"

示例 2:

  • 输入:"aaa"

  • 输出:6

  • 解释:6个回文子串: "a", "a", "a", "aa", "aa", "aaa"

提示:输入的字符串长度不会超过 1000 。

思路及实现

动规五部曲:

1.确定dp数组(dp table)以及下标的含义

如果大家做了很多这种子序列相关的题目,在定义dp数组的时候 很自然就会想题目求什么,我们就如何定义dp数组。

绝大多数题目确实是这样,不过本题如果我们定义,dp[i] 为 下标i结尾的字符串有 dp[i]个回文串的话,我们会发现很难找到递归关系。

dp[i] 和 dp[i-1] ,dp[i + 1] 看上去都没啥关系。

所以我们要看回文串的性质。 如图:

我们在判断字符串S是否是回文,那么如果我们知道 s[1],s[2],s[3] 这个子串是回文的,那么只需要比较 s[0]和s[4]这两个元素是否相同,如果相同的话,这个字符串s 就是回文串。

那么此时我们是不是能找到一种递归关系,也就是判断一个子字符串(字符串的下表范围[i,j])是否回文,依赖于,子字符串(下表范围[i + 1, j - 1])) 是否是回文。

所以为了明确这种递归关系,我们的dp数组是要定义成一位二维dp数组。

布尔类型的dp[i] [j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i] [j]为true,否则为false。

2.确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i] [j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串

  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串

  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dpi + 1是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        result++;
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        result++;
        dp[i][j] = true;
    }
}

result就是统计回文子串的数量。

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i] [j]初始化的时候,就初始为false。

3.dp数组如何初始化

dp[i] [j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i] [j]初始化为false。

4.确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1] [j - 1]是否为true,在对dp[i] [j]进行赋值true的。

dp[i + 1] [j - 1] 在 dp[i] [j]的左下角,如图:

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1] [j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1] [j - 1]都是经过计算的

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1] [j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {  // 注意遍历顺序
    for (int j = i; j < s.size(); j++) {
        if (s[i] == s[j]) {
            if (j - i <= 1) { // 情况一 和 情况二
                result++;
                dp[i][j] = true;
            } else if (dp[i + 1][j - 1]) { // 情况三
                result++;
                dp[i][j] = true;
            }
        }
    }
}

5.举例推导dp数组

举例,输入:"aaa",dp[i] [j]状态如下:

图中有6个true,所以就是有6个回文子串。

注意因为dp[i] [j]的定义,所以j一定是大于等于i的,那么在填充dpi的时候一定是只填充右上半部分

以上分析完毕,代码如下:

class Solution {
    public int countSubstrings(String s) {
        char[] chars = s.toCharArray();
        int len = chars.length;
        boolean[][] dp = new boolean[len][len];
        int result = 0;
        for (int i = len - 1; i >= 0; i--) {
            for (int j = i; j < len; j++) {
                if (chars[i] == chars[j]) {
                    if (j - i <= 1) { // 情况一 和 情况二
                        result++;
                        dp[i][j] = true;
                    } else if (dp[i + 1][j - 1]) { //情况三
                        result++;
                        dp[i][j] = true;
                    }
                }
            }
        }
        return result;
    }
}

516.最长回文子序列

题目链接 | 文章讲解 | 视频讲解

题目:给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。

示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。

提示:

  • 1 <= s.length <= 1000

  • s 只包含小写英文字母

思路及实现

回文子串是要连续的,回文子序列可不是连续的! 回文子串,回文子序列都是动态规划经典题目。

回文子串,可以做这两题:

  • 647.回文子串

  • 5.最长回文子串

思路其实是差不多的,但本题要比求回文子串简单一点,因为情况少了一点。

动规五部曲分析如下:

1.确定dp数组(dp table)以及下标的含义

dp[i] [j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i] [j]

2.确定递推公式

在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i] [j] = dp[i + 1] [j - 1] + 2;

如图:

(如果这里看不懂,回忆一下dpi的定义)

如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子序列的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。

加入s[j]的回文子序列长度为dp[i + 1] [j]。

加入s[i]的回文子序列长度为dp[i] [j - 1]。

那么dp[i] [j]一定是取最大的,即:dp[i] [j] = max(dp[i + 1] [j], dp[i] [j - 1]);

代码如下:

if (s[i] == s[j]) {
    dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
    dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
}

3.dp数组如何初始化

首先要考虑当i 和j 相同的情况,从递推公式:dp[i] [j] = dp[i + 1] [j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。

所以需要手动初始化一下,当i与j相同,那么dp[i] [j]一定是等于1的,即:一个字符的回文子序列长度就是1。

其他情况dp[i] [j]初始为0就行,这样递推公式:dp[i] [j] = max(dp[i + 1] [j], dp[i] [j - 1]); 中dp[i] [j]才不会被初始值覆盖。

4.确定遍历顺序

从递归公式中,可以看出,dp[i] [j] 依赖于 dp[i + 1] [j - 1] ,dp[i + 1] [j] 和 dp[i] [j - 1],如图:

所以遍历i的时候一定要从下到上遍历,这样才能保证下一行的数据是经过计算的

j的话,可以正常从左向右遍历。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) {
    for (int j = i + 1; j < s.size(); j++) {
        if (s[i] == s[j]) {
            dp[i][j] = dp[i + 1][j - 1] + 2;
        } else {
            dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
        }
    }
}

5.举例推导dp数组

输入s:"cbbd" 为例,dp数组状态如图:

红色框即:dp[0] [s.size() - 1]; 为最终结果。

以上分析完毕,代码如下:

public class Solution {
    public int longestPalindromeSubseq(String s) {
        int len = s.length();
        int[][] dp = new int[len + 1][len + 1];
        for (int i = len - 1; i >= 0; i--) { // 从后往前遍历 保证情况不漏
            dp[i][i] = 1; // 初始化
            for (int j = i + 1; j < len; j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], Math.max(dp[i][j], dp[i][j - 1]));
                }
            }
        }
        return dp[0][len - 1];
    }
}
最长回文子串是指在一个字符串中最长回文子序列回文是指正着读和倒着读都一样的字符串。动态规划是解决最长回文子串问题的一种常用方法。动态规划的思想是将问题分解成子问题,通过求解子问题的最优解来得到原问题的最优解。在最长回文子串问题中,我们可以使用一个二维数组dp[i][j]来表示从i到j的子串是否为回文子串。如果dp[i][j]为true,则表示从i到j的子串回文子串,否则不是。我们可以通过以下步骤来求解最长回文子串: 1. 初始化dp数组,将所有dp[i][i]都设置为true,表示单个字符是回文子串。 2. 遍历字符串s,从长度为2的子串开始,依次判断每个子串是否为回文子串。如果是,则将dp[i][j]设置为true。 3. 在遍历的过程中,记录最长回文子串的长度和起始位置。 4. 最后,通过起始位置和长度来截取最长回文子串。 下面是一个示例代码,可以帮助你更好地理解动态规划求解最长回文子串的过程: class Solution { public: string longestPalindrome(string s) { int len=s.size(); if(len<2) return s; bool dp[len][len];//布尔型,dp[i][j]表示从i到j是否构成回文 int max_count=1;//最大字串的长度 int start=0;//最长字串的起始位置 for(int j=0;j<len;j++) { for(int i=0;i<j;i++) { if(s[i]!=s[j]) dp[i][j]=false; else if((j-i)<3)//(j-1)-(i+1)+1<2表示dp[i][j]的最大字串长度为1 dp[i][j]=true; else { dp[i][j]=dp[i+1][j-1]; } if((j-i+1)>max_count&&dp[i][j]) { max_count=j-i+1; start=i; } } } return s.substr(start,max_count);//截取字符串 } };
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值