回溯算法(细说版)

在这里插入图片描述
在这里插入图片描述

一、求子集问题

添加链接描述

Leecode78

在这里插入图片描述

在这里插入图片描述

1.回溯三部曲

在这里插入图片描述

1)确定递归函数参数及其返回值
返回值:不需要返回值,因为我们定义了全局变量数组path为子集收集元素,二维数组result存放子集组合。
参数:(int[] nums, int startIndex)其中nums是传入的数组,startIndex是起始点

(2)确定递归终止条件
剩余集合为空的时候,也就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了。

(3)确定单层搜索逻辑
        for (int i = startIndex; i < nums.length; i++){
            path.add(nums[i]);
            subsetsHelper(nums, i + 1);
            path.removeLast();
        }

在这里插入图片描述
在这里插入图片描述

2.完整代码

class Solution {
    List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
    LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
    public List<List<Integer>> subsets(int[] nums) {
        if (nums.length == 0){
            result.add(new ArrayList<>());
            return result;
        }
        subsetsHelper(nums, 0);
        return result;
    }

    private void subsetsHelper(int[] nums, int startIndex){
        result.add(new ArrayList<>(path));//「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。
        if (startIndex >= nums.length){ //终止条件可不加
            return;
        }
        for (int i = startIndex; i < nums.length; i++){
            path.add(nums[i]);
            subsetsHelper(nums, i + 1);
            path.removeLast();
        }
    }
}

3.作者链接
代码随想录

Leecode90

1.题目与分析

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2.代码
used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过,used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过,为什么?
(上面的图里面used取值是0和1,1是true,0是false)
我是这样理解的,for循环保证了从数组中从前往后一个一个取值,再用if判断条件。所以nums[i - 1]一定比nums[i]先被取值和判断。如果nums[i - 1]被取值了,那used[i - 1]会被置1,只有当递归再回退到这一层时再将它置0。每递归一层都是在寻找数组对应于递归深度位置的值,每一层里用for循环来寻找。所以当used[i - 1] == 1时,说明nums[i - 1]和nums[i]分别属于两层递归中,也就是我们要用这两个数分别放在数组的两个位置,这时不需要去重。但是当used[i - 1] == 0时,说明nums[i - 1]和nums[i]属于同一层递归中(只是for循环进入下一层循环),也就是我们要用这两个数放在数组中的同一个位置上,这就是我们要去重的情况。

class Solution {
   List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
   LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
   boolean[] used;
    public List<List<Integer>> subsetsWithDup(int[] nums) {
        if (nums.length == 0){
            result.add(path);
            return result;
        }
        Arrays.sort(nums);
        used = new boolean[nums.length];
        subsetsWithDupHelper(nums, 0);
        return result;
    }
    
    private void subsetsWithDupHelper(int[] nums, int startIndex){
        result.add(new ArrayList<>(path));
        if (startIndex >= nums.length){
            return;
        }
        for (int i = startIndex; i < nums.length; i++){
            if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]){
                continue;
            }
            path.add(nums[i]);
            used[i] = true;
            subsetsWithDupHelper(nums, i + 1);
            path.removeLast();
            used[i] = false;
        }
    }
}

3.作者链接
代码随想录

二、排列问题

Solution46

1.题目

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.回溯三部曲
(1)递归函数参数
「首先排列是有序的,也就是说[1,2] 和[2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方」。
可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。
但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

在这里插入图片描述

    List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
    LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
    boolean[] used;
    private void permuteHelper(int[] nums)

(2)递归终止条件
可以看出叶子节点,就是收割结果的地方。那么什么时候,算是到达叶子节点呢?
当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

        if (path.size() == nums.length){
            result.add(new ArrayList<>(path));
            return;
        }

(3)单层搜索的逻辑
for循环里不用startIndex了。因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。
而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次。

        for (int i = 0; i < nums.length; i++){
            if (used[i]){
                continue;
            }
            used[i] = true;
            path.add(nums[i]);
            permuteHelper(nums);
            path.removeLast();
            used[i] = false;
        }

3.完整代码

class Solution {

    List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
    LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
    boolean[] used;
    public List<List<Integer>> permute(int[] nums) {
        if (nums.length == 0){
            return result;
        }
        used = new boolean[nums.length];
        permuteHelper(nums);
        return result;
    }

    private void permuteHelper(int[] nums){
        if (path.size() == nums.length){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++){
            if (used[i]){
                continue;
            }
            used[i] = true;
            path.add(nums[i]);
            permuteHelper(nums);
            path.removeLast();
            used[i] = false;
        }
    }
}

4.作者链接
代码随想录

Solution47

1.问题

在这里插入图片描述
在这里插入图片描述

为什么used[i - 1] == true说明同⼀树⽀nums[i - 1]使⽤过,used[i - 1] == false说明同⼀树层nums[i - 1]使⽤过?
(1是true,0是false)
我是这样理解的,for循环保证了从数组中从前往后一个一个取值,再用if判断条件。所以nums[i - 1]一定比nums[i]先被取值和判断。如果nums[i - 1]被取值了,那used[i - 1]会被置1,只有当递归再回退到这一层时再将它置0。每递归一层都是在寻找数组对应于递归深度位置的值,每一层里用for循环来寻找。所以当used[i - 1] == 1时,说明nums[i - 1]和nums[i]分别属于两层递归中,也就是我们要用这两个数分别放在数组的两个位置,这时不需要去重。但是当used[i - 1] == 0时,说明nums[i - 1]和nums[i]属于同一层递归中(只是for循环进入下一层循环),也就是我们要用这两个数放在数组中的同一个位置上,这就是我们要去重的情况。

2.代码

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    List<Integer> path = new ArrayList<>();
    boolean[] used;

    public List<List<Integer>> permuteUnique(int[] nums) {
        used = new boolean[nums.length];
        Arrays.sort(nums);
        backTrack(nums);
        return result;
    }

    private void backTrack(int[] nums) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = 0; i < nums.length; i++) {
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }

            if (used[i]) {
                continue;
            }

            used[i] = true;
            path.add(nums[i]);
            backTrack(nums);
            path.remove(path.size() - 1);
            used[i] = false;//回溯
        }
    }
}

3.作者链接
代码随想录

三、组合问题

Solution77

1.题目

在这里插入图片描述
在这里插入图片描述

2.回溯三部曲
(1)递归函数的返回值以及参数
在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
startIndex来记录下一层递归,搜索的起始位置。

    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    private void combineHelper(int n, int k, int startIndex)

(2)回溯函数终止条件

        if (path.size() == k){
            result.add(new ArrayList<>(path));
            return;
        }

在这里插入图片描述

(3)单层搜索的过程

        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){  // 控制树的横向遍历
            path.add(i);  // 处理节点 
            combineHelper(n, k, i + 1);  // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
            path.removeLast();  // 回溯,撤销处理的节点
        }

在这里插入图片描述

(4)剪枝优化

在这里插入图片描述
在这里插入图片描述

3.完整代码

class Solution {
    List<List<Integer>> result = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    public List<List<Integer>> combine(int n, int k) {
        combineHelper(n, k, 1);
        return result;
    }

    /**
     * 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex
     * @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
     */
    private void combineHelper(int n, int k, int startIndex){
        //终止条件
        if (path.size() == k){
            result.add(new ArrayList<>(path));
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++){
            path.add(i);
            combineHelper(n, k, i + 1);
            path.removeLast();
        }
    }
}

Solution17

1.问题描述

在这里插入图片描述
在这里插入图片描述

2.回溯三部曲
(1)确定回溯函数参数

backTracking(String digits, String[] numString, int num)

digits就是示例中的"23"
numString就是{"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"}
num:对于digits的长度是n,那么num的取值就是从0到n-1,很容易理解嘛,为的就是渠道digits里的每一个数子

(2)确定终止条件
例如输入用例"23",两个数字,那么根节点往下递归两层就可以了,叶子节点就是要收集的结果集。
那么终止条件就是如果num 等于 输入的数字个数(digits.size)了然后收集结果,结束本层递归。

        if (num == digits.length()) {
            list.add(temp.toString());
            return;
        }

(3)确定单层遍历逻辑
首先要取num指向的数字,并找到对应的字符集(手机键盘的字符集)。
注意本题每一个数字代表的是不同集合,也就是求不同集合之间的组合,而77. 组合216.组合总和III都是是求同一个集合中的组合!

3.完整代码

class Solution {

    //设置全局列表存储最后的结果
    List<String> list = new ArrayList<>();
    //每次迭代获取一个字符串,所以会设计大量的字符串拼接,所以这里选择更为高效的 StringBuild
    StringBuilder temp = new StringBuilder();

    public List<String> letterCombinations(String digits) {
        if (digits == null || digits.length() == 0) {
            return list;
        }
        //按键上2对应"abc",我们这里新增了两个无效的字符串"",那么numString[2]对应的也是"abc"
        String[] numString = {"", "", "abc", "def", "ghi", "jkl", "mno", "pqrs", "tuv", "wxyz"};
        backTracking(digits, numString, 0);
        return list;

    }

    public void backTracking(String digits, String[] numString, int num) {
        //遍历全部一次记录一次得到的字符串
        if (num == digits.length()) {
            list.add(temp.toString());
            return;
        }
        //str 表示当前num对应的字符串
        String str = numString[digits.charAt(num) - '0'];//将num指向的数字转为int,取数字对应的字符集
        for (int i = 0; i < str.length(); i++) {
            temp.append(str.charAt(i));
            backTracking(digits, numString, num + 1);// 递归,注意num+1,一下层要处理下一个数字对应的字符集了
            temp.deleteCharAt(temp.length() - 1);
        }
    }
}

4.作者链接
代码随想录

Solution39

1.问题描述

在这里插入图片描述
在这里插入图片描述

2.回溯三部曲
(1)递归函数参数

    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path =new ArrayList<>();
    
    public void backtracking(int[] candidates, int target, int sum, int idx) 

这里依然是定义两个全局变量,二维数组result存放结果集,数组path存放符合条件的结果。
然后是题目中给出的参数,集合candidates, 和目标值target。
此外我还定义了int型的sum变量来统计单一结果path里的总和,其实这个sum也可以不用,用target做相应的减法就可以了,最后如果target==0就说明找到符合的结果了,但为了代码逻辑清晰,我依然用了sum。
本题还需要startIndex来控制for循环的起始位置,对于组合问题,什么时候需要startIndex呢?

如果是一个集合来求组合的话,就需要startIndex,例如:回溯算法:求组合问题!,回溯算法:求组合总和!。
如果是多个集合取组合,各个集合之间相互不影响,那么就不用startIndex,例如:回溯算法:电话号码的字母组合
注意以上我只是说求组合的情况,如果是排列问题,又是另一套分析的套路。

(2)递归终止条件

在这里插入图片描述

        // 找到了数字和为 target 的组合
        if (sum == target) {
            res.add(new ArrayList<>(path));
            return;
        }

(3)单层搜索的逻辑
单层for循环依然是从startIndex开始,搜索candidates集合。
本题元素为可重复选取的。如何重复选取呢,看代码,注释部分:

        for (int i = idx; i < candidates.length; i++) {
            // 如果 sum + candidates[i] > target 就终止遍历
            if (sum + candidates[i] > target) break;
            path.add(candidates[i]);
            backtracking(res, path, candidates, target, sum + candidates[i], i);
            path.remove(path.size() - 1); // 回溯,移除路径 path 最后一个元素
        }
    }

(4)剪枝优化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.完整代码

class Solution {

    List<List<Integer>> res = new ArrayList<>();
    List<Integer> path =new ArrayList<>();
    
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        
        Arrays.sort(candidates); // 先进行排序
        backtracking(candidates, target, 0, 0);
        return res;
    }

    public void backtracking(int[] candidates, int target, int sum, int idx) {
        // 找到了数字和为 target 的组合
        if (sum == target) {
            res.add(new ArrayList<>(path));
            return;
        }

        for (int i = idx; i < candidates.length; i++) {
            // 如果 sum + candidates[i] > target 就终止遍历
            if (sum + candidates[i] > target) break;
            path.add(candidates[i]);
            backtracking(candidates, target, sum + candidates[i], i);
            path.remove(path.size() - 1); // 回溯,移除路径 path 最后一个元素
        }
    }
}

4.作者链接
代码随想录

Solution40

1.问题描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.完整代码

class Solution {
    List<List<Integer>> lists = new ArrayList<>();
    LinkedList<Integer> path = new LinkedList<>();
    boolean[] used;
    int sum = 0;

    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        Arrays.sort(candidates);
        used = new boolean[candidates.length];
        backTracking(candidates, target, 0);
        return lists;
    }

    public void backTracking(int[] arr, int target, int startIndex) {
        if (sum == target) {
            lists.add(new ArrayList(path));
            return;
        }
        for (int i = startIndex; i < arr.length && arr[i] + sum <= target; i++) {
            //出现重复节点,同层的第一个节点已经被访问过,所以直接跳过
            if (i > 0 && arr[i] == arr[i - 1] && !used[i - 1]) {
                continue;
            }
            used[i] = true;
            sum += arr[i];
            path.add(arr[i]);
            //每个节点仅能选择一次,所以从下一位开始
            backTracking(arr, target, i + 1);
            int temp = path.removeLast();
            used[i] = false;
            sum -= temp;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlackTurn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值