关于mAP(mean average precision)平均精度均值总结

本文介绍了机器学习中的mAP(mean average precision)概念,即平均精度均值。通过PR曲线解释了如何计算AP,并提供了两种算法:11-point interpolated average precision和基于不同阈值的方法。文章还详细描述了PR曲线的生成过程,涉及阈值变化对precision和recall的影响,以及如何根据PR曲线计算AP和mAP。
摘要由CSDN通过智能技术生成

作为一个没有什么天赋的半小白,从网上搜索想要的知识还是很辛苦的。首先感谢好多大神的分享,但是其中也不乏各种不负责任的“神”,会错误的引导读者,可能是笔误,也可能是脑袋“短路”,使得刚入门的新手(比如我),因为一个简单的问题+错误的回答而浪费很长时间,所以以后遇到问题,或者学会了新知识还是自己记录一下吧。

关于mAP(mean average precision),首先翻译成中文,即平均精度均值,从字面意思理解就是要算好多个平均精度,然后再取它们的均值。所以问题就在于AP,即平均精度怎么求。

首先上一张图在这里插入图片描述

接下来根据这张图描述AP怎么算(先不用管物理意义),有两种算法:
一. 11-point interpolated average precision(不用管它的名字,直接看算法)
这里取11个数,第一个数为横轴recall大于0时,precision最大的值,记它为P(max0),第二个数为横轴recall大于0.1时,precision最大的值,记它为P(max1),依次类推,最后一个数就是recall大于1.0时,precision最大的值,记为P(max1.0);然后把这11个数加起来,再

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>