基于matlab的字符定位与分割

该博客分享了基于MATLAB实现字符定位与分割的详细步骤。首先,选择红色光源图像并灰度化,因阴影影响弃用高斯滤波,采用中值滤波。图像调整大小以适应不同输入,通过直方图确定二值化阈值。二值化后进行膨胀处理,增强字符轮廓。接着,通过8次膨胀找到字符边界,并进行倾斜矫正。最后,通过像素求和方法分割成单个字符,调整为统一尺寸,为模板匹配做准备。整个过程强调实践中的问题解决和代码自创性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于matlab的字符定位与分割

matlab源代码及相关资源 百度网盘地址:
链接: https://pan.baidu.com/s/18MMYlYwmpGC3CZaD-mUmzg 提取码: iv5s 复制这段内容后打开百度网盘手机App,操作更方便哦

首先,先查阅一下相关的书籍和论文和网站博客,看看别人是怎样做的,为什么这样做。尽管大家都提出了一套似乎完美的解决方案,但复现的时候,效果太差,有时候真的怀疑这些论文是不是造假。大概了解整个流程之后,集中精力去修改里面效果不好的方法,用其他能用的方法和技巧去做,最终下来发现,代码大部分都是自己写的。为了方便显示思路,每张图都加上了标题,是思路。
字符分割部分: 在这里插入图片描述

分析:选红色光源的图像,灰度化后受阴影的影响最小,使用高斯滤波的效果并不明显,所以干脆不用了,中值滤波会把字符滤掉一部分,所以也不用,调整图像的大小为【1900 2000】,调整图像的大小是为了更好的定位,使算法适用不同大小的输入图像。之后绘制直方图是要人工确定二值化阈值(这里确定为50)。
在这里插入图片描述
分析:二值化之后取反,第一次初步定位,之后进行膨胀处理,膨胀的目的是,让字符连接起来,和使字符更加清晰。
在这里插入图片描述
经过8次膨胀后发现字符基本连起来,再膨胀就会连成块,之后进行倾斜矫正,第二次分割:通过分别横向和纵向的像素求和,如果整行(n)或整列(n)的像素值之和等于0,(n+1)行或列不等于0,则n行或n列确定上下两部分的分界线,目的是方便后面进一步分割成单个字符。后面再分割成单个字符原理与之相同。
在这里插入图片描述
通过纵向扫描分割成单个字符,为字符识别的模板匹配算法提供待检测图样,切割完图像之后,将图像矩阵的全零行去掉,然后将图像转化为统一尺寸【60 100】。
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值