《 ROP EDGE : TOWARDS DEEP GRAPH CONVOLU - TIONAL NETWORKS ON NODE CLASSIFICATION》

本文提出DropEdge技术,用于解决深度图卷积网络(GCNs)在节点分类任务中遇到的过拟合和过度平滑问题。DropEdge通过在训练时随机删除输入图的边,既起到了数据增强的作用,又减缓了消息传递,从而改善模型的泛化能力和防止过平滑。实验表明,DropEdge能提升多种GCNs架构的性能。
摘要由CSDN通过智能技术生成

摘要

过拟合过度平滑是发展深度图卷积网络进行节点分类(Node classification)的两个主要障碍。特别是过拟合会削弱小数据集的泛化能力,而过平滑会随着网络深度的增加而将输出表示从输入特征中分离出来,从而阻碍模型的训练。本文提出了一种新颖灵活的技术DropEdge来缓解这两个问题。在其核心,DropEdge在每个训练元随机地从输入图中删除一定数量的边,充当数据扩充器和消息传递减速器。此外,我们还从理论上证明了,降低过平滑的收敛速度或减轻过平滑带来的信息损失。更重要的是,我们的DropEdge是一种通用技能,可以与许多其他主干模型(例如gcn、ResGCN、GraphSAGE和JKNet)一起装备,以提高性能。在几个基准测试上的大量实验证明,DropEdge可以不断地改进各种浅层和深层GCNs的性能。通过实验验证了DropEdge在防止过平滑方面的效果。代码将在发布时公开。

1 引言

图卷积网络(GCNs)利用消息传递或等价于某些邻居聚合函数来从节点及其邻居中提取高级特征,提高了各种图形任务的技术水平,如节点分类(node classification)(Bhagat等,2011;张等,2018),社会推荐(social recommendation)(Freeman, 2000;Perozzi et al., 2014),以及link prediction (Liben-Nowell & Kleinberg, 2007)等。换句话说,GCNs已经成为图形表示学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值