摘要
过拟合和过度平滑是发展深度图卷积网络进行节点分类(Node classification)的两个主要障碍。特别是过拟合会削弱小数据集的泛化能力,而过平滑会随着网络深度的增加而将输出表示从输入特征中分离出来,从而阻碍模型的训练。本文提出了一种新颖灵活的技术DropEdge来缓解这两个问题。在其核心,DropEdge在每个训练元随机地从输入图中删除一定数量的边,充当数据扩充器和消息传递减速器。此外,我们还从理论上证明了,降低过平滑的收敛速度或减轻过平滑带来的信息损失。更重要的是,我们的DropEdge是一种通用技能,可以与许多其他主干模型(例如gcn、ResGCN、GraphSAGE和JKNet)一起装备,以提高性能。在几个基准测试上的大量实验证明,DropEdge可以不断地改进各种浅层和深层GCNs的性能。通过实验验证了DropEdge在防止过平滑方面的效果。代码将在发布时公开。
1 引言
图卷积网络(GCNs)利用消息传递或等价于某些邻居聚合函数来从节点及其邻居中提取高级特征,提高了各种图形任务的技术水平,如节点分类(node classification)(Bhagat等,2011;张等,2018),社会推荐(social recommendation)(Freeman, 2000;Perozzi et al., 2014),以及link prediction (Liben-Nowell & Kleinberg, 2007)等。换句话说,GCNs已经成为图形表示学