数据分析实战 数据处理和简单分析 股票分析

本文通过pandas和numpy实战分析股票数据,包括数据预处理、捕捉股票涨跌、买卖收益计算及双均线策略中的金叉、死叉策略。通过对历史行情数据的处理,模拟买卖策略并评估收益率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文实战来源b站,旨在巩固利用pandas和numpy对数据进行处理

文章框架

  1. 数据预处理
  2. 捕获股票上涨、下跌日期
  3. 股票买卖收益分析
  4. 双均线策略  金叉、死叉的计算分析,测试

  1. 数据预处理  ——  使用tushare包获取某股票的历史行情数据
    1. import tushare as ts
      import pandas as pd
      from pandas import DataFrame,Series
      import numpy as np
      
      #获取某只股票的历史行情数据
      df = ts.get_k_date(code='60051',start=‘2000-01-01’) 
      df.to_csv('./maotai.csv')
      df = pd.read_csv('./maotai.csv')
      #删除df中的‘Unnamed: 0’
      df.drop(labels='Unnamed: 0',axis=1,inplace=True)
      df.info()
      #将列索引date转为时间序列类型,作为源数据的行索引
      df['date'] = pd.to_datetime(df['date'])
      df.set_index('date',inplace=True)
  2. 捕获股票上涨、下跌日期  ——  输出该股票所
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值