算法学习笔记—最长不重复子串 滑动窗口 java

这道题是leetcode第三题非常经典

给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。

示例 1:

输入: “abcabcbb” 输出: 3 解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。 示例 2:

输入: “bbbbb” 输出: 1 解释: 因为无重复字符的最长子串是 “b”,所以其长度为 1。 示例 3:

输入: “pwwkew” 输出: 3 解释: 因为无重复字符的最长子串是 “wke”,所以其长度为 3。
请注意,你的答案必须是 子串 的长度,“pwke” 是一个子序列,不是子串。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-substring-without-repeating-characters
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

btw老公之前在面试阿里的时候也考了这道题
所以今天来复习一下
第一种节解法:
最简单的思维方式就是暴力方式
两个for循环遍历整个字符串,需要思考的就是把子串放在一个List里面还是其他数据结构里面,其实都可以实现。
我选择了最简单的List
思路就是,遍历出每个子串,但是只记录最长的一个结果。

class Solution {
    public int lengthOfLongestSubstring(String s) {
        int res = 0;
        for(int i = 0 ; i < s.length() ; i++){
            List<Character> list = new ArrayList<>();
            for(int j=i ; j< s.length() ; j++){
                if(list.contains(s.charAt(j))){
                    break;
                }
                list.add(s.charAt(j));
            }
            res=Math.max(list.size(), res);
        }
        return res;
    }
}

第二种解法:
也就是最常用的解法 滑动窗口
滑动窗口也就是用两个游标分别记录字符串的头尾
一个游标记录字符串头start,另一记录字符串尾end,判断每个字符(也就是游标尾部的位置)是否重复出现(我选择把中间数据存放在Set中,因为Set不可以放重复元素,这样使用起来方便)如果Set中有这个字符,那么记录当前字符串的长度,然后移动字符串头的游标,开始判断新的子串。

class Solution {
    public int lengthOfLongestSubstring(String s) {
        int res = 0;
        int n = s.length();
        int start = 0;
        int end = 0;
        Set<Character>  set = new HashSet<>();
        while(start<n&&end<n){
            if(set.contains(s.charAt(end))){
                set.remove(s.charAt(start++));
            }else{
                set.add(s.charAt(end++));
                res = Math.max(end-start,res);
            }
        }
        return res;
    }
}

这个并不是最优解,因为每次都要判断字符是否存在,所以后面还需要更多的思考,完善这个算法。
当然这个算法优点就是易懂,并且可以扩展成输出最长子串,也就是在用一个中间变量记录,res最大时的子串就可以。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值