流量&搜广推
文章平均质量分 80
流量分发、搜索、广告、推荐
nsq_ai
这个作者很懒,什么都没留下…
展开
-
11、PCA 介绍
在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。PCA(Principal Component Analysis) 是一种常见的数据分析方式,常用于高维数据的降维,可用于提取数据的主要特征分量。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征1、求均值,每列减原创 2022-06-05 12:12:21 · 1045 阅读 · 0 评论 -
10、DCN 介绍
传统的CTR预估模型需要大量的特征工程,耗时耗力;引入DNN之后,依靠神经网络强大的学习能力,可以一定程度上实现自动学习特征组合。但是DNN的缺点在于隐式的学习特征组合带来的不可解释性,以及低效率的学习(并不是所有的特征组合都是有用的)。最开始FM使用隐向量的内积来建模组合特征;FFM在此基础上引入field的概念,针对不同的field上使用不同隐向量。但是,这两者都是针对低阶的特征组合进行建模的。而DNN学习到的特征都是高度非线性的高阶组合特征,含义非常难以解释。DCN全称Deep & Cross N原创 2022-06-05 12:07:22 · 7283 阅读 · 0 评论 -
9、Wide&Deep简介
Wide&Deep设计了一种融合浅层(wide)模型和深层(deep)模型进行联合训练的框架,综合利用浅层模型的记忆能力和深层模型的泛化能力,实现单模型对推荐系统准确性和扩展性的兼顾。记忆能力可以解释为学习那些经常同时出现的特征,发掘历史数据中存在的共现性。基于记忆能力的推荐系统通常偏向学习历史数据的样本,直接与用户己经采取的动作相关泛化能力则基于迁移相关性,探索之前几乎没有出现过的新特征组合。泛化能力相比记忆能力则更趋向于提升推荐内容的多样性。Wide&Deep模型。它混合了一个线性模型(Wide p原创 2022-06-05 11:55:34 · 298 阅读 · 0 评论 -
8、DeepFM介绍
对于一个基于CTR预估的推荐系统,最重要的是学习到用户点击行为背后隐含的特征组合。在不同的推荐场景中,低阶组合特征或者高阶组合特征可能都会对最终的CTR产生影响。简单线性模型,缺乏学习high-order特征的能力,很难从训练样本中学习到从未出现或极少出现的重要特征。深层模型善于捕捉high-order复杂特征。现有模型用于CTR预估的有很多尝试,如CNN/RNN/FNN/PNN/W&D等,但都有各自的问题。DeepFM 是华为诺亚方舟实验室在 2017 年提出的模型。可以看做是从FM基础上衍生的算法原创 2022-06-05 11:50:40 · 1270 阅读 · 0 评论 -
7、场感知分解机FFM介绍
FFM算法,全称是Field-aware Factorization Machines,是FM(Factorization Machines)的改进版。来源:最初的概念来自Yu-Chin Juan(阮毓钦,毕业于中国台湾大学,现在美国Criteo工作)与其比赛队员,是他们借鉴了来自Michael Jahrer的论文中的field概念提出了FM的升级版模型。通过引入field的概念,FFM把相同性质的特征归于同一个field。在CTR预估中,通常会遇到one-hot类型的变量,会导致数据特征的稀疏。未解决原创 2022-06-05 11:39:23 · 1876 阅读 · 0 评论 -
6、因子分解机FM介绍
前言在进行CTR(click through rate)预估时,除了单个特征外,通常要进行特征组合,FM算法是进行特征组合时的常见算法。因子分解机(Factorization Machine),是由Konstanz大学(德国康斯坦茨大学)Steffen Rendle(现任职于Google)于2010年最早提出的一种基于矩阵分解的机器学习算法,旨在解决大规模稀疏数据下的特征组合问题。1、 FM 简介1.1 特征工程为什么要考虑特征之间的关联信息?大量的研究和实际数据分析结果表明:某些特征之原创 2022-03-07 19:39:29 · 1667 阅读 · 0 评论 -
5、逻辑回归LR推导和分析
1、基本概念逻辑回归是一种监督学习分类算法,实现了给定数据集到0,1的一种映射。逻辑回归的过程面对一个回归或者分类问题,构造预测函数,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏。损失函数表征预测值与真实值之间的差异程度,如果预测值与真实值越接近则损失函数应该越小。结构风险函数 = 经验风险项 + 正则项 其中损失函数为经验风险项的重要组成部分前半部分为经验风险项,后半部分为正则项。概率描述的是在一定条件下某个事件发生的可能性原创 2022-03-07 19:33:16 · 366 阅读 · 0 评论 -
4、流量分发介绍
1、流量分发的模式流量分发,是一种网络市场运营模式。流量分发的模式主要有两种,中心化的和去中心化的。1.1 去中心化模式概念平台不提供流量分发的入口,各个节点自己负责流量的获取。比较典型的产品就是微信公众号。每个公众号都是个体,必须自己去主动寻找流量,平台不负责外部流量的导入。这就导致每个个体都会从外部平台(社区,社群,线下)把流量导入到微信中。好处你的粉丝就是你自己的,不属于平台,他们是你的个人资产个体的积极性会更高,由于没有平台流量的倾斜,个体之间更公平,个体也会更加用心的经营自己原创 2022-03-07 19:29:12 · 5539 阅读 · 0 评论 -
3、CTR预估相关介绍
前言推荐系统通常分为召回和排序两个步骤召回:粗排选取合适的内容,可以通过协同过滤,兴趣tag,内容最热等方式排序(CTR预估):使用一个点击率预估模型(输入用户特征,内容特征,用户内容交叉特征等)对召回出来的内容进行排序1、CTR预估CTR预估是推荐中最核心的算法之一。相关概念:CTR预估:对每次广告的点击情况做出预测,预测用户是点击还是不点击。CTR预估的影响因素:比如历史点击率、广告位置、时间、用户等。CTR预估模型:综合考虑各种因素、特征,在大量历史数据上训练得到的模型,用原创 2022-03-06 16:36:43 · 5056 阅读 · 0 评论 -
2、CTR点击率
2、CTR2.1 CTR介绍CTR(Click-Through-Rate)即点击通过率,是互联网广告常用的术语。指网络广告(图片广告/文字广告/关键词广告/排名广告/视频广告等)的点击到达率,即该广告的实际点击次数(严格的来说,可以是到达目标页面的数量)除以广告的展现量(Show content)。2.2 点击率CTR指在搜索中输入关键词后进行搜索,然后按竞价等因素把相关的网页按顺序进行排列出来,然后用户会选择自己感兴趣的网站点击进去;把一个网站所有搜索出来的次数作为总次数,把用户点击并进入网站的次原创 2022-03-06 15:00:19 · 330 阅读 · 0 评论 -
1、 网络营销常见单词缩写
网络营销,要知道以下常见名词CPC (Cost Per Click): 按点击计费(平均点击价格)CPC=消费量/点击量CPA (Cost Per Action): 按成果数计费CPA=消费量/转化量=(CPC点击量)/(CVR点击量)=CPC/CVRCPM (Cost Per Mille): 按千次展现计费(千次展现价格)CPM=(消费量/展现量)*1000CVR (Click Value Rate): 转化率,衡量CPA广告效果的指标CTR (Click Throug原创 2022-03-06 14:57:01 · 3844 阅读 · 0 评论