02.3 线性代数

2.3 线性代数

简要地回顾一下部分基本线性代数内容
这些内容能够帮助你了解和实现本书中介绍的大多数模型

2.3.1 标量

标量(scalar)

  • 定义:仅包含一个数值的叫标量
  • pytorch中,标量由只有一个元素的张量表示
import torch

x = torch.tensor(3.0)
y = torch.tensor(2.0)

x + y, x * y, x / y, x**y

(tensor(5.), tensor(6.), tensor(1.5000), tensor(9.))

2.3.2 向量

  • 可以将向量视为标量值组成的列表
  • 标量值称为向量的元素(element)或分量(component)
x = torch.arange(4)
x

tensor([0, 1, 2, 3])
2.3.2.1 长度、维度和形状

一个向量由个实值标量组成,向量的长度通常称为向量的维度(dimension)。
1、len()函数来访问张量的长度

len(x)

4

2、.shape属性访问向量的维度

x.shape

torch.Size([4])

向量或轴的维度被用来表示向量或轴的长度,即向量或轴的元素数量。

2.3.3 矩阵

  • 向量将标量从零阶推广到一阶
  • 矩阵将向量从一阶推广到二阶

1、实例化矩阵

A = torch.arange(20).reshape(5, 4)
A

tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15],
        [16, 17, 18, 19]])

2、转置

A.T

tensor([[ 0,  4,  8, 12, 16],
        [ 1,  5,  9, 13, 17],
        [ 2,  6, 10, 14, 18],
        [ 3,  7, 11, 15, 19]])

2.3.4 张量

  • 就像向量是标量的推广,矩阵是向量的推广一样,我们可以构建具有更多轴的数据结构。
  • 张量提供了描述具有任意数量轴的维数组的通用方法
  • 向量是一阶张量,矩阵是二阶张量
X = torch.arange(24).reshape(2, 3, 4)
X

tensor([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]],

        [[12, 13, 14, 15],
         [16, 17, 18, 19],
         [20, 21, 22, 23]]])

2.3.5 张量算法的基本性质

1、张量相加

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()  # 通过分配新内存,将A的一个副本分配给B
A, A + B

(tensor([[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.],
         [12., 13., 14., 15.],
         [16., 17., 18., 19.]]),
 tensor([[ 0.,  2.,  4.,  6.],
         [ 8., 10., 12., 14.],
         [16., 18., 20., 22.],
         [24., 26., 28., 30.],
         [32., 34., 36., 38.]]))

给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量。

2、张量相乘

A * B

tensor([[  0.,   1.,   4.,   9.],
        [ 16.,  25.,  36.,  49.],
        [ 64.,  81., 100., 121.],
        [144., 169., 196., 225.],
        [256., 289., 324., 361.]])

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。

a = 2
X = torch.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape

(tensor([[[ 2,  3,  4,  5],
          [ 6,  7,  8,  9],
          [10, 11, 12, 13]],

         [[14, 15, 16, 17],
          [18, 19, 20, 21],
          [22, 23, 24, 25]]]),
 torch.Size([2, 3, 4]))

2.3.6 降维

对任意张量进行的一个有用的操作是计算其元素的和。
1、求和

x = torch.arange(4, dtype=torch.float32)
x, x.sum()

(tensor([0., 1., 2., 3.]), tensor(6.))

A.shape, A.sum()
(torch.Size([5, 4]), tensor(190.))

默认情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。

  • 输入矩阵沿0轴降维以生成输出向量,因此输入轴0的维数在输出形状中消失。
A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape

(tensor([40., 45., 50., 55.]), torch.Size([4]))
  • 指定axis=1将通过汇总所有列的元素降维(轴1)。因此,输入轴1的维数在输出形状中消失。
A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape

(tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))
  • 沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。
A.sum(axis=[0, 1])  # SameasA.sum()

tensor(190.)
  • 用函数来计算任意形状张量的平均值
A.mean(), A.sum() / A.numel()

(tensor(9.5000), tensor(9.5000))
  • 计算平均值的函数也可以沿指定轴降低张量的维度。
A.mean(axis=0), A.sum(axis=0) / A.shape[0]

(tensor([ 8.,  9., 10., 11.]), tensor([ 8.,  9., 10., 11.]))
2.3.6.1 非降维求和

调用函数来计算总和或均值时保持轴数不变会很有用。

sum_A = A.sum(axis=1, keepdims=True)
sum_A

tensor([[ 6.],
        [22.],
        [38.],
        [54.],
        [70.]])
  • 由于sum_A在对每行进行求和后仍保持两个轴,我们可以通过广播将A除以sum_A。
A / sum_A

tensor([[0.0000, 0.1667, 0.3333, 0.5000],
        [0.1818, 0.2273, 0.2727, 0.3182],
        [0.2105, 0.2368, 0.2632, 0.2895],
        [0.2222, 0.2407, 0.2593, 0.2778],
        [0.2286, 0.2429, 0.2571, 0.2714]])

2.3.7 点积(Dot Product)

y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y)

(tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.))

注意,我们可以通过执行按元素乘法,然后进行求和来表示两个向量的点积:

torch.sum(x * y)

tensor(6.)

2.3.8. 矩阵-向量积

矩阵A和向量x调用torch.mv(A, x)时,会执行矩阵-向量积。 注意,A的列维数(沿轴1的长度)必须与x的维数(其长度)相同。

A.shape, x.shape, torch.mv(A, x)

(torch.Size([5, 4]), torch.Size([4]), tensor([ 14.,  38.,  62.,  86., 110.]))

2.3.9. 矩阵-矩阵乘法

B = torch.ones(4, 3)
torch.mm(A, B)

tensor([[ 6.,  6.,  6.],
        [22., 22., 22.],
        [38., 38., 38.],
        [54., 54., 54.],
        [70., 70., 70.]])

2.3.10. 范数

  • L1范数:绝对值之和
  • L2范数:平方和开方
# L2
u = torch.tensor([3.0, -4.0])
torch.norm(u)

tensor(5.)

# L1
torch.abs(u).sum()
tensor(7.)


2.3.12. 小结

  • 标量、向量、矩阵和张量是线性代数中的基本数学对象。

  • 向量泛化自标量,矩阵泛化自向量。

  • 标量、向量、矩阵和张量分别具有零、一、二和任意数量的轴。

  • 一个张量可以通过sum和mean沿指定的轴降低维度。

  • 两个矩阵的按元素乘法被称为他们的Hadamard积。它与矩阵乘法不同。

  • 在深度学习中,我们经常使用范数,如范数、范数和Frobenius范数。

  • 我们可以对标量、向量、矩阵和张量执行各种操作。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值