谱方法(Spectral Method)基础知识

谱方法(Spectral Method)是配点法(Collocation Method)的一种。一般来说,配点法包括有限元方法(Finite Element)和谱方法(Spectral Method)。配点法的一般思路是:选取合适的函数基底,这些函数基底的导数都是已知的,求得叠加系数,将这些函数基底的组合作为边界条件下常微分方程的近似解。其中,有限元方法选用的函数基底是局域的(localized support),即这些基底往往只在局部几个点处非零,比如B-样条;而谱方法选用的函数基底是全域的(global support),即这些基底在整个实数域上大部分非零,比如多项式和三角函数。

对于一个线性常系数的常微分方程,一般都可以求得解析解的;但是对于线性但非常系数的情形,解析解不容易求。有的可以用特殊的换元方法(比如欧拉方程),有的必须用泰勒级数或者洛朗级数展开的方法求解,这种解一般也不会是初等函数,而是特殊函数/无穷级数这一类。不过只要是线性方程,使用谱方法求解总能化成线性方程组,因此特别简单。具体地说:

  1. 线性常微分方程边值问题+以多项式为基底的谱方法

常微分方程: f ( y ( m ) , y ( m − 1 ) , . . . , y ( 3 ) , y ′ ′ , y ′ , y , t ) = 0 f(y^{(m)}, y^{(m-1)}, ..., y^{(3)}, y'', y',y, t)=0 f(y(m),y(m1),...,y(3),y′′,y,y,t)=0 ,其中 f f f 关于 y y y 的任意阶的导数都是线性的,即所有导数(包括零阶的原函数)的幂次都是1,所有项的次数也都是1。像这样的线性形式,我们或者也可以写成: A m ( t ) y ( m ) + A m − 1 ( t ) y ( m − 1 ) + . . . + A 2 ( t ) y ′ ′ + A 1 ( t ) y ′ + A 0 ( t ) y + A ( t ) = 0 A_m(t)y^{(m)}+A_{m-1}(t)y^{(m-1)}+...+A_2(t)y''+A_1(t)y'+A_0(t)y+A(t)=0 Am(t)y(m)+Am1(t)y(m1)+...+A2(t)y′′+A1(t)y+A0(t)y+A(t)=0

如果选择在两个上下界之中插入k个点进行配点,则总计配点个数为k+2=n,我们预计用这n个点的信息产生n个方程,此时可以确定含有n个未定参数的解析式,因此设: y ^ ( t ) = x 0 + x 1 t + x 2 t 2 + . . . + x n − 1 t n − 1 \hat{y}(t)=x_0+x_1t+x_2t^2+...+x_{n-1}t^{n-1} y^(t)=x0+x1t+x2t2+...+xn1tn1 ,并用它作为 y ( t ) y(t) y(t) 的估计值。这样一来, y ^ ( t ) \hat{y}(t) y^(t) 的任意阶导数总是很容易求得的,它就是: y ^ ( k ) ( t ) = ∑ i ≥ k n − 1 P i k x i t i − k = ∑ i ≥ k n − 1 i ! ( i − k ) ! x i t i − k \hat{y}^{(k)}(t)=\sum\limits_{i\geq k}^{n-1}P_i^kx_it^{i-k}=\sum\limits_{i\geq k}^{n-1}\frac{i!}{(i-k)!}x_it^{i-k} y^(k)(t)=ikn1Pikxitik=ikn1(ik)!i!xitik  以上仅仅是一个最一般的表达式,事实上在使用过程中非常高阶的导数是很罕见的(至少在绝大多数物理问题中),最高阶为2是最为常见的,这些情形下 y ( t ) y(t) y(t) 的导数的表达式都很简单。

现在,我们拥有了可以求任意阶导数的估计值 y ^ ( t ) \hat{y}(t) y^(t) 的表达式,其中有n个未定参数 x i x_i xi ,我们设上下界分别是 t 1 t_1 t1 t n t_n tn ,然后可以在区间内选取n-2个点 t 2 , t 3 , . . . , t n − 1 t_2, t_3, ..., t_{n-1} t2,t3,...,tn1 。我们将用这n个点(配点)和 估计值 y ^ ( t ) \hat{y}(t) y^(t) 的表达式,将线性的微分方程写成一个线性的代数方程。我们记:

f ( y ( m ) , . . . y ′ ′ , y ′ , y , t ) = 0 ⇒ A m ( t ) y ^ ( m ) ( t ) + . . . A 2 ( t ) y ^ ′ ′ ( t ) + A 1 ( t ) y ^ ′ ( t ) + A 0 ( t ) y ^ ( t ) + A ( t ) = ∑ k = 0 m A k ( t ) y ^ ( k ) ( t ) + A ( t ) = 0 f(y^{(m)}, ... y'', y', y, t)=0\quad \Rightarrow \quad A_m(t)\hat{y}^{(m)}(t)+...A_2(t)\hat{y}''(t)+A_1(t)\hat{y}'(t)+A_0(t)\hat{y}(t)+A(t)=\sum\limits_{k=0}^mA_k(t)\hat{y}^{(k)}(t)+A(t)=0 f(y(m),...y′′,y,y,t)=0Am(t)y^(m)(t)+...A2(t)y^′′(t)+A1(t)y^(t)+A0(t)y^(t)+A(t)=k=0mAk(t)y^(k)(t)+A(t)=0  只需要在n个配点上分别把 t = t i t=t_i t=ti y ^ ( m ) ( t ) \hat{y}^{(m)}(t) y^(m)(t) 的导数形式带入方程就可以了。我们得到:

∑ k = 0 m A k ( t ) y ^ ( k ) ( t ) + A ( t ) = ∑ k = 0 m A k ( t ) ∑ j ≥ k n − 1 P j k x j t j − k = ∑ k = 0 m ∑ j ≥ k n − 1 x j A k ( t ) P j k t j − k = 0 \sum\limits_{k=0}^mA_k(t)\hat{y}^{(k)}(t)+A(t)=\sum\limits_{k=0}^mA_k(t)\sum\limits_{j\geq k}^{n-1}P_j^kx_jt^{j-k}=\sum\limits_{k=0}^m\sum\limits_{j\geq k}^{n-1}x_jA_k(t)P_j^kt^{j-k}=0 k=0mAk(t)y^(k)(t)+A(t)=k=0mAk(t)jkn1Pjkxjtjk=k=0mjkn1xjAk(t)Pjktjk=0  代入n个配点 t i t_i ti 就得到了关于 x j x_j xj 的线性方程组: ∑ k = 0 m ∑ j ≥ k n − 1 A k ( t i ) P j k t i j − k x j = 0 \sum\limits_{k=0}^m\sum\limits_{j\geq k}^{n-1}A_k(t_i)P_j^kt_i^{j-k}x_j=0 k=0mjkn1Ak(ti)Pjktijkxj=0  这里除了 x j x_j xj 以外,其他所有数据都是已知量(或者可以直接求出);同时关于 x j x_j xj 均为一次关系,为关于 x j x_j xj 的线性方程组。利用解线性方程组的方法求得 x j x_j xj 后,就可以得到关于t的微分方程解的估计值表达式: y ^ ( t ) = ∑ k = 0 n x k t k \hat{y}(t)=\sum\limits_{k=0}^nx_kt^k y^(t)=k=0nxktk

当然,谱方法主要用于求解偏微分方程
#“Acoustic Perturbation Equations” (APE) 和 “Linearized Euler Equations” (LEE) 的区别
“Acoustic Perturbation Equations” (APE) 和 “Linearized Euler Equations” (LEE) 都是流体动力学中用于描述声波传播和小扰动的方程组,但它们的形式和假设不同。以下是这两组方程的基本形式:

1. Acoustic Perturbation Equations (APE)

APE方程通常具有以下形式,但可能根据具体的物理假设和简化而有所变化:

  1. 连续性方程(描述质量守恒):
    ∂ ρ ′ ∂ t + ∇ ⋅ ( ρ u ′ ) + ∇ ⋅ ( ρ ′ U ) = 0 \frac{\partial \rho'}{\partial t} + \nabla \cdot (\rho \mathbf{u}') + \nabla \cdot (\rho' \mathbf{U}) = 0 tρ+(ρu)+(ρU)=0
    其中, ( ρ ′ ) (\rho') (ρ) 是密度扰动, u ′ \mathbf{u}' u是速度扰动, U \mathbf{U} U 是基础流体速度。

  2. 动量方程(描述动量守恒):
    ρ ∂ u ′ ∂ t + ρ ( U ⋅ ∇ ) u ′ + ρ ( u ′ ⋅ ∇ ) U + ∇ p ′ = f ′ \rho \frac{\partial \mathbf{u}'}{\partial t} + \rho (\mathbf{U} \cdot \nabla) \mathbf{u}' + \rho (\mathbf{u}' \cdot \nabla) \mathbf{U} + \nabla p' = \mathbf{f}' ρtu+ρ(U)u+ρ(u)U+p=f
    其中, p ′ p' p 是压力扰动,(\mathbf{f}') 是外部扰动力(如果有的话)。

  3. 状态方程(描述物质的状态,如理想气体状态方程):
    p ′ p 0 = γ ρ ′ ρ 0 \frac{p'}{p_0} = \gamma \frac{\rho'}{\rho_0} p0p=γρ0ρ
    其中, p 0 p_0 p0 ρ 0 \rho_0 ρ0 分别是基础流体的压力和密度, γ \gamma γ是比热容比。

2. Linearized Euler Equations (LEE)

LEE方程是对不可压缩、无粘性Euler方程的线性化形式,通常具有以下形式:

  1. 连续性方程(描述质量守恒):
    ∂ ρ ′ ∂ t + ρ 0 ∇ ⋅ u ′ + u ′ ⋅ ∇ ρ 0 = 0 \frac{\partial \rho'}{\partial t} + \rho_0 \nabla \cdot \mathbf{u}' + \mathbf{u}' \cdot \nabla \rho_0 = 0 tρ+ρ0u+uρ0=0
    其中, ρ 0 \rho_0 ρ0 是未扰动的流体密度, ρ ′ \rho' ρ 是密度扰动, u ′ \mathbf{u}' u 是速度扰动。

  2. 动量方程(描述动量守恒):
    ρ 0 ∂ u ′ ∂ t + ∇ p ′ = 0 \rho_0 \frac{\partial \mathbf{u}'}{\partial t} + \nabla p' = 0 ρ0tu+p=0
    其中, p ′ p' p是压力扰动。

  3. 状态方程(描述物质的状态,通常假设为理想气体):
    ∂ p ′ ∂ t + γ p 0 ∇ ⋅ u ′ = 0 \frac{\partial p'}{\partial t} + \gamma p_0 \nabla \cdot \mathbf{u}' = 0 tp+γp0u=0
    其中, p 0 p_0 p0 是未扰动的流体压力。

LEE方程假设流体是不可压缩且无粘性的,因此比APE更简单,但适用性有限。两者的主要区别在于所包含的物理效应和适用范围。APE更一般化,能够描述包括基础流体运动在内的更复杂情况,而LEE则专注于理想流体中的小扰动。

  • 1
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
聚类(spectral clustering)是一种基于图论的聚类算法,适用于无法使用传统聚类算法(如K-means)有效划分的数据。聚类的核心思想是将数据集转换成图形结构,利用图的分解来实现聚类。 在Python中,有一个常用的聚类库是scikit-learn的`SpectralClustering`。该库提供了一种简单且高效的方法来执行聚类。 使用`SpectralClustering`库进行聚类的步骤如下: 1. 导入库:首先需要导入`SpectralClustering`库。 ```python from sklearn.cluster import SpectralClustering ``` 2. 创建模型:使用`SpectralClustering`函数创建一个聚类模型对象,并传入相关参数。 ```python model = SpectralClustering(n_clusters=2, affinity='nearest_neighbors') ``` 其中,`n_clusters`表示需要聚类的簇数,`affinity`表示相似度的计算方法,常用的选项包括`nearest_neighbors`和`rbf`。 3. 训练模型:使用`fit`函数训练模型,传入需要进行聚类的数据。 ```python model.fit(data) ``` 4. 获取聚类结果:通过访问模型的`labels_`属性,可以获取到每个样本的聚类标签。 ```python cluster_labels = model.labels_ ``` 聚类标签是一个表示每个样本所属簇的数组。 总结来说,Python的聚类库提供了一个方便而有效的方式来执行聚类。通过导入库、创建模型、训练模型和获取聚类结果的步骤,可以轻松地使用聚类算法对数据进行聚类分析。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值