微分方程---战争模型--常规战模型

*微分方程—战争模型–常规战模型
兰彻斯特方程是描述交战过程中双方兵力变化关系的微分方程组。 因系F.W.兰彻斯特所创,故有其名。因系F.W.兰彻斯特所创,故有其名。
1914年,英国工程师兰彻斯特在英国《工程》杂志上发表的一系列论文中,首次从古代使用冷兵器进行战斗和近代运用枪炮进行战斗的不同特点出发,在一些简化假设的前提下,建立了相应的微分方程组,深刻地揭示了交战过程中双方战斗单位数(亦称兵力)变化的数量关系。
这是一个很有意思的模型,在真实世界的战争中我们也可以找到这一类模型的影子。
我们首先来谈论正规作战模型。
我们首先设下X,Y分别为甲乙两方的军队作战人员数量。
考虑到甲方战斗人员减员率f和乙方兵力成正比,即f=a.y。
同理乙方…g=b.x。
正规作战不考虑非战斗减员和兵力援助的情况下,我们可以得到微分方程:在这里插入图片描述
可化为
在这里插入图片描述
则由微分方程求解的方法得
在这里插入图片描述
在此,我们可以把ay2和bx2抽象为两方的战斗力
K>0时,最终乙方获胜。
K<0时,甲方获胜。
K=0时,同归于尽。
在此,我用matlab画出其图像以便直观理解。
在这里插入图片描述

源代码在附录1.

很有意思的是乙方的获胜条件:在这里插入图片描述

这说明当甲方战斗力增加九倍,而乙方只需要增加兵力三倍。这种战术也叫做人海战术。人海战术在攻击手段和防卫手段基本持平的冷兵器时代,有着重大价值。在火力和打击范围没有大幅度增加的前提下,火力的载体多的一方较可能胜出。
著名的伊苏斯战役中,亚历山大大帝以1:3-4的劣势兵力对阵波斯国王大流士三世。亚历山大使用骑兵直接插入敌方阵的缝隙中,打击波斯人的中军,扰乱敌方的指挥。大流士三世率先弃阵逃走,导致波斯全线崩溃。在现代战争势态中,随着科技的发展,武器的威力越来越大,投射距离越来越远。单纯依靠人数的人海战术作用变得并不突显,以少胜多的战例变得越来越多。随着武器的进步,高超音速洲际导弹、炸弹之父、炸弹之母、战略轰炸机、隐身战斗机、航天武器、基因武器、海军航母、两栖攻击舰对陆上的攻击掩护乃至核武器问世后,人海战术的巨型兵团战术遂失去发挥空间。(来自 人海战术 百度百科)

x=linspace(0,5);%横坐标向量
y=linspace(0,5); %纵坐标向量
[X,Y]=meshgrid(x,y); %产生自变量网络坐标
K=X.^2-Y.^2;u=-4:1:4;%等势线
U=K;%计算k
figure;%建立一个窗口
contour(X,Y,U,u,'-');%画等势线
hold on;%保持图像 
发布了2 篇原创文章 · 获赞 1 · 访问量 66
App 阅读领勋章
微信扫码 下载APP
阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览