
3D目标检测(自动驾驶,机器人感知篇)
文章平均质量分 93
该专栏专注于自动驾驶相关的感知,3D目标检测算法解读,更注重实操,配置环境、解读算法框架、训练模型、测试模型、最后跑自己的数据,以及涉及相关可创新点。
臭皮匠-hfW
流水不争先,争滔滔不绝。
展开
-
3D目标检测--PointPillars论文和OpenPCDet代码解读
PointPillars是一种用于三维物体检测的深度学习模型,其主要思想是将三维点云数据转化为二维的BEV(Bird’s Eye View)视角下的特征图,以实现在计算上的高效性和准确性。原创 2023-04-18 16:50:11 · 4043 阅读 · 3 评论 -
3D目标检测概要及VoxelNet论文和代码解读(0)--Pillarization
VoxelNet解决了点云无序化数据结构的提取问题后,便采用了Voxel的方法。Voxel是将三维世界中的空间按照一定的大小划分成格子,使用pointnet网络对每个小格子的数据进行特征提取,并将提取出来的特征作为该小格子的代表放回到3D空间中。这样,无序的点云数据就被转换为一组有序的高维特征数据。接着,采用三维卷积来提取这些三维的voxel数据,将图像检测思路应用于这个特征图上。voxel和点云的关系图。原创 2023-04-03 20:56:59 · 1329 阅读 · 1 评论 -
3D目标检测概要及VoxelNet论文和代码解读(1)--Pillar VFE
3D目标检测简要说明,VoxelNet解读原创 2023-04-02 18:52:09 · 2468 阅读 · 1 评论 -
Ubuntu20.04安装CUDA&&cudnn(初学者详细图文教程)
深度学习环境配置,在Ubuntu系统安装CUDA和cudnn,使用GPU加速。原创 2023-03-04 20:22:34 · 7217 阅读 · 2 评论 -
ORB-SLAM2环境配置与运行
1. 简介ORB-SLAM是西班牙Zaragoza大学的Raul Mur-Artal编写的视觉SLAM系统。他的论文“ORB-SLAM: a versatile andaccurate monocular SLAM system"发表在2015年的IEEE Trans. on Robotics上。开源代码包括前期的ORB-SLAM和后期的ORB-SLAM2。项目主页网址为: http://webdiis.unizar.es/~raulmur/orbslam/。ORB-SLAM是一个基于特征点的实时单目原创 2022-03-20 13:45:25 · 3952 阅读 · 0 评论 -
ROS安装与验证
官方网站:http://wiki.ros.org/ROS/Installation本机环境:虚拟机Ubuntu16.04自己需求:on Ubuntu 16.04 with ROS Kinetic。1. 添加源①开启控制台$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'我们的Linux在原创 2022-03-01 19:09:26 · 1077 阅读 · 0 评论