思路
- 题意:给n个区间和m个查询,要求对于每一个查询区间,覆盖该区间需要的区间数量最少是多少
- 做法:预处理出来每一个点i被覆盖的情况下,可以延申到最右的是多少,然后用倍增的思想,处理出dp[i][j]表示从i这个点出发,经过2^j个区间能到达的最右的点是哪个点。
- 状态转移方程:dp[i][j]=dp[dp[i][j-1]][j-1]:从 i 点跳2^ j 次最右点是 i 点跳2^ j-1次,再跳2^ j-1次
- 之后只要从后往前遍历dp,求出第一个小于查询区间 r 的dp[l][j],在判断一下 当前跳了 2^ j-1的位置能否覆盖r 点即可,如果能覆盖 ans+1,不能输出-1
代码
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e5 + 10;
int n,m,v[N];
int dp[N][22];
int main(){
cin >> n>> m;
int l,r,ma = 0;
for(int i=0;i<n;i++){
cin >> l >> r;
v[l] = max(v[l],r);
ma = max(ma,r);
}
for(int i=1;i<=ma;i++) v[i] = max(v[i],v[i-1]);
for(int i=0;i<=ma;i++) dp[i][0] = v[i];
for(int j=1;j<=20;j++){
for(int i=0;i<=ma;i++)
dp[i][j] = dp[dp[i][j-1]][j-1];
}
while(m--){
int ans = 0;
cin >> l >> r;
for(int i=20;i>=0;i--)
if(dp[l][i]<r) ans += 1<<i,l = dp[l][i];
if(v[l]>=r) cout << ans+1 << "\n";
else cout << -1 << "\n";
}
return 0;
}