Task4模型建立(智慧海洋竞赛)

Task4模型建立

学习目标

  1. 学习如何选择合适的模型以及如何通过模型来进行特征选择
  2. 掌握随机森林、lightGBM、Xgboost模型的使用
  3. 掌握贝叶斯优化方法的具体使用

内容介绍

  1. 模型训练与预测
    随机森林(RandomForest)
    lightGBM模型
    Xgboost模型
  2. 交叉验证
  3. 模型调参
  4. 智慧海洋数据集模型示例

1. 模型训练与预测

模型训练与预测的主要步骤为:
(1):导入需要的工具库
(2):对数据进行预处理,包括导入数据集、处理数据,具体为缺失值处理、连续特征归一化、类别特征转换等
(3):训练模型,选择合适的机器学习模型,利用训练集对模型进行训练,达到最佳拟合效果
(4):预测结果,将待预测的数据输入到训练好的模型中,得到预测的结果

下面进行几种常用的分类算法进行介绍

1.1 随机森林分类

随机森林参数介绍
随机森林属于机器学习下面的集成学习,基本单元是决策树,森林就是很多颗树。其输出的类别是由各个树输出的类别的众数而定。
主要优点:

  1. 在当前很多数据集中,有较好的准确率,表现良好;
  2. 能够处理高维度的数据,并且不用做特征选择(因为特征子集是随机选择的)
  3. 在训练完后,它能够给出哪些feature比较重要
  4. 对generlization error使用的是无偏估计,具有良好的泛化能力
  5. 训练速度快,容易做成并行化方法(训练时树与树之间是独立的)
  6. 在训练的时候,可以检测到feature之间的影响
  7. 实现简单
  8. 对于不平衡的数据集,可以平衡误差
  9. 如果有很大一部分的特征遗失,仍可以维持准确度。

缺点 :

  1. 随机森林在解决回归问题时,并没有像它在分类中表现的那么好,这是因为它并不能给出一个连续的输出。当进行回归时,随机森林不能够做出超越训练集数据范围的预测,这可能导致在某些特定噪声的数据进行建模时出现过度拟合
  2. 对于许多统计建模者来说,随机森林给人的感觉就像一个黑盒子,你无法控制模型内部的运行。只能在不同的参数和随机种子之间进行尝试
  3. 可能有很多相似的决策树,掩盖了真实的结果
  4. 对于小数据或者低维数据(特征较少的数据),可能不能产生很好的分类。(处理高维数据,处理特征遗失数据,处理不平衡数据是随机森林的长处)。
  5. 执行数据虽然比boosting等快(随机森林属于bagging),但比单只决策树慢多了。

使用sklearn调用随机森林分类树进行预测算法:

from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score
#数据集导入
iris=dataset.load_iris()
feature=iris.feature_names
X=iris.data
y=iris.target
#随机森林
clf=RandomForestClassifier(n_estimators=200)
train_X,test_X,train_y,test_y=train_test_split(X,y,test_size=0.1,random_state=5)
clf.fit(train_X,train_y)#就是求得训练集X的均值啊,方差啊,最大值啊,最小值啊这些训练集X固有的属性。
test_pred=clf.predict(test_X)
#特征的重要性查看
print(str(feature)+'\n'+str(clf.feature_importances_))#feature_importances_函数返回[n_features]形状的数组

在这里插入图片描述
采用F1 score进行模型的评价

#F1-score 用于模型评价
#如果是二分类问题则选择参数‘binary’
#如果考虑类别的不平衡性,需要计算类别的加权平均,则使用‘weighted’
#如果不考虑类别的不平衡性,计算宏平均,则使用‘macro’
score=f1_score(test_y,test_pred,average='macro')
print("随机森林-macro:",score)
score=f1_score(test_y,test_pred,average='weighted')
print("随机森林-weighted:",score)

在这里插入图片描述

1.2 lightGBM模型

lightGBM的学习可参见这篇文章
lightGBM中文文档这个对超参数的讲解较为详细,建议仔细阅读

  1. lightGBM过拟合处理方案:
  • 使用较小的 max_bin
  • 使用较小的 num_leaves
  • 使用 min_data_in_leaf 和 min_sum_hessian_in_leaf
  • 通过设置 bagging_fraction 和 bagging_freq 来使用 bagging
  • 通过设置 feature_fraction 来使用特征子抽样
  • 使用更大的训练数据
  • 使用 lambda_l1, lambda_l2 和 min_gain_to_split 来使用正则
  • 尝试 max_depth 来避免生成过深的树
  1. lightGBM针对更快的训练速度的解决方案
  • 通过设置 bagging_fraction 和 bagging_freq 参数来使用 bagging 方法
  • 通过设置 feature_fraction 参数来使用特征的子抽样
  • 使用较小的 max_bin
  • 使用 save_binary 在未来的学习过程对数据加载进行加速
  • 使用并行学习, 可参考 并行学习指南
  1. lightGBM针对更好的准确率
  • 使用较大的 max_bin (学习速度可能变慢)
  • 使用较小的 learning_rate 和较大的 num_iterations
  • 使用较大的 num_leaves (可能导致过拟合)
  • 使用更大的训练数据
  • 尝试 dart
import lightgbm as lgb
from sklearn import datasets
from sklearn.model_selection import train_test_split
import numpy as np
from sklearn.metrics import roc_auc_score, accuracy_score
import matplotlib.pyplot as plt
#加载数据
iris=datasets.load_iris()
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3)
# 转换为Dataset数据格式
train_data = lgb.Dataset(X_train, label=y_train)
validation_data = lgb.Dataset(X_test, label=y_test)
# 参数
results = {}
params = {
    'learning_rate': 0.1,
    'lambda_l1': 0.1,
    'lambda_l2': 0.9,
    'max_depth': 1,
    'objective': 'multiclass',  # 目标函数
    'num_class': 3,
    'verbose': -1 
}
# 模型训练
gbm = lgb.train(params, train_data, valid_sets=(validation_data,train_data),valid_names=('validate','train'),evals_result= results)
# 模型预测
y_pred_test = gbm.predict(X_test)
y_pred_data = gbm.predict(X_train)
y_pred_data = [list(x).index(max(x)) for x in y_pred_data]
y_pred_test = [list(x).index(max(x)) for x in y_pred_test]
# 模型评估
print(accuracy_score(y_test, y_pred_test))
print('训练集',f1_score(y_train, y_pred_data,average='macro'))
print('验证集',f1_score(y_test, y_pred_test,average='macro'))

# 有以下曲线可知验证集的损失是比训练集的损失要高,所以模型可以判断模型出现了过拟合
lgb.plot_metric(results)
plt.show()
#绘制重要特征
lgb.plot_importance(gbm,importance_type="split")
lgb.show()

1.3 xgboost模型

XGBoost基础介绍
XGBoost参数介绍
XGboost参数调优方法

from sklearn.datasets import load_iris
import xgboost as xgb
from xgboost import plot_importance
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score   # 准确率
#加载数据集
iris=load_iris()
X,y=iris.data,iris.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1234565) # 数据集分割
#算法参数
params={
	'booster': 'gbtree',
	'objective': 'multi:softmax',
	'eval_metric':'mlogloss',
	'num_class': 3,
	'gamma': 0.1,
	'max_depth': 6,
	'lambda': 2,
	'subsample': 0.7,
	'colsample_bytree': 0.75,
	'min_child_weight': 3,
	'eta': 0.1,
	'seed': 1,
	'nthread': 4,
}
#plst = params.items()
train_data = xgb.DMatrix(X_train, y_train) # 生成数据集格式
num_rounds=500
model=xgb.train(params,train_data)#xgboost模型训练
#对测试集进行预测
dtest=xgb.DMatrix(X_test)
y_pred=model.predict(dtest)
#计算准确率
F1_score=f1_score(y_test,y_pred,average='macro')
print("F1_score: %.2f%%" % (F1_score*100.0))

# 显示重要特征
plot_importance(model)
plt.show()

2. 交叉验证

交叉验证是验证分类器性能的一种统计分析方法,其基本思想在某种意义下将原始数据进行分组,一部分作为训练集,另一部分作为验证集。首先是用训练集对分类器进行训练,再利用验证集来测试所得到的的模型,以此来作为评价分类器的性能指标。常用的交叉验证方法包括简单交叉验证、K折交叉验证、留一法交叉验证和留P法交叉验证

  1. 简单交叉验证(CROSS VALIDATION)
    简单交叉验证是将原始数据分为两组,一组作为训练集,另一组作为验证集,利用训练集训练分类器,然后利用验证集验证模型,将最后的分类准确率作为此分类器的性能指标。通常是划分30%的数据作为测试数据
  2. K折交叉验证(K-Fold cross validation)
    K折交叉验证是将原始数据分为K组,然后将每个子集数据分别做一次验证集,其余的K-1组子集作为训练集,这样就会得到K个模型,将K个模型最终的验证集的分类准确率取平均值,作为K折交叉验证分类器的性能指标。通常设置为K为5或者10.
  3. 留一法交叉验证(Leave-One-Out Cross Validation,LOO-CV)
    留一法交叉验证是指每个训练集由除一个样本之外的其余样本组成,留下的一个样本组成检验集。这样对于N个样本的数据集,可以组成N个不同的训练集和N个不同的验证集,因此该方法会得到N个模型,用N个模型最终的验证集的分类准确率的平均是作为分类器的性能指标。
  4. 留P法交叉验证
    该方法与留一法类似,是从完整数据集中删除P个样本,产生所有可能的训练集和验证集

1.简单交叉验证

from sklearn.model_selection import train_test_split
from sklearn import datasets
#数据集导入
iris=datasets.load_iris()
feature=iris.feature_names
X = iris.data
y = iris.target
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.4,random_state=0)

2.K折交叉验证

from sklearn.model_selection import KFold
folds = KFold(n_splits=10, shuffle=is_shuffle)

3.留一法交叉验证

from sklearn.model_selection import LeaveOneOut
loo=LeaveOneOut()

4.留P法交叉验证

from sklearn.model_selection import LeavePOut
lpo=LeavePOut(p=5)

另外还有一些其他交叉验证的分割方法,如基于类标签,具有分层的交叉验证。这一类交叉验证方法主要用于解决样本不平衡的问题。
这种情况下常用StratifiedKFold和StratifiedShuffleSplit的分层抽样方法,可以确保相应的类别频率在每个训练和验证的(fold)中得以保留。
StratifiedKFold:是K-fold的变种,会返回stratified(分层)的折叠:每个小集合中的各个类别的样本比例大致和完整数据集相同。
StratifiedShuffleSplit:是ShuffleSplit的一种变种,会返回直接的划分,比如创建一个划分,但是划分中的每个类的比例和完整数据集中的相同。

3. 模型调参

调参就是对模型的参数进行调整,找到使模型最优的超参数,调参的目标就是尽可能达到整体模型的最优

  1. 网格搜索
    网格搜索就是穷举搜索,在所有候选的参数选择中进行循环遍历去搜索最优的参数。
  2. 学习曲线
    学习曲线是在训练集大小不同时通过绘制模型训练集和交叉验证集上的准确率来观察模型在新数据上的表现,进而来判断模型是否方差偏高或偏差过高,以及增大训练集是否可以减小过拟合。
    1、当训练集和测试集的误差收敛但却很高时,为高偏差。
    左上角的偏差很高,训练集和验证集的准确率都很低,很可能是欠拟合。
    我们可以增加模型参数,比如,构建更多的特征,减小正则项。
    此时通过增加数据量是不起作用的。
    2、当训练集和测试集的误差之间有大的差距时,为高方差
    当训练集的准确率比其他独立数据集上的测试结果的准确率要高时,一般都是过拟合。
    右上角方差很高,训练集和验证集的准确率相差太多,应该是过拟合。
    我们可以增大训练集,降低模型复杂度,增大正则项,或者通过特征选择减少特征数。
    理想情况是是找到偏差和方差都很小的情况,即收敛且误差较小。
  3. 验证曲线 和学习曲线不同
    验证曲线的横轴为某个超参数的一系列值,由此比较不同超参数设置下的模型准确值。从下图的验证曲线可以看到,随着超参数设置的改变,模型可能会有从欠拟合到合适再到过拟合的过程,进而可以选择一个合适的超参数设置来提高模型的性能。
#以Xgboost为例,该网格搜索代码示例如下
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import GridSearchCV

cancer = load_breast_cancer()
x = cancer.data[:50]
y = cancer.target[:50]
train_x, valid_x, train_y, valid_y = train_test_split(x, y, test_size=0.333, random_state=0)  # 分训练集和验证集
# 这里不需要Dmatrix

parameters = {
    'max_depth': [5, 10, 15, 20, 25],
    'learning_rate': [0.01, 0.02, 0.05, 0.1, 0.15],
    'n_estimators': [50, 100, 200, 300, 500],
    'min_child_weight': [0, 2, 5, 10, 20],
    'max_delta_step': [0, 0.2, 0.6, 1, 2],
    'subsample': [0.6, 0.7, 0.8, 0.85, 0.95],
    'colsample_bytree': [0.5, 0.6, 0.7, 0.8, 0.9],
    'reg_alpha': [0, 0.25, 0.5, 0.75, 1],
    'reg_lambda': [0.2, 0.4, 0.6, 0.8, 1],
    'scale_pos_weight': [0.2, 0.4, 0.6, 0.8, 1]
}

xlf = xgb.XGBClassifier(max_depth=10,
                        learning_rate=0.01,
                        n_estimators=2000,
                        silent=True,
                        objective='binary:logistic',
                        nthread=-1,
                        gamma=0,
                        min_child_weight=1,
                        max_delta_step=0,
                        subsample=0.85,
                        colsample_bytree=0.7,
                        colsample_bylevel=1,
                        reg_alpha=0,
                        reg_lambda=1,
                        scale_pos_weight=1,
                        seed=1440,
                        missing=None)

# 有了gridsearch我们便不需要fit函数
gsearch = GridSearchCV(xlf, param_grid=parameters, scoring='accuracy', cv=3)
gsearch.fit(train_x, train_y)

print("Best score: %0.3f" % gsearch.best_score_)
print("Best parameters set:")
best_parameters = gsearch.best_estimator_.get_params()
for param_name in sorted(parameters.keys()):
    print("\t%s: %r" % (param_name, best_parameters[param_name]))
#极其耗费时间,电脑没执行完

4. 智慧海洋数据集模型代码示例

lightGBM模型

import pandas as pd
import numpy as np
from tqdm import tqdm
from sklearn.metrics import classification_report, f1_score
from sklearn.model_selection import StratifiedKFold, KFold,train_test_split
import lightgbm as lgb
import os
import warnings
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials
all_df=pd.read_csv('group_df.csv',index_col=0)
use_train = all_df[all_df['label'] != -1]
use_test = all_df[all_df['label'] == -1]#label为-1时是测试集
use_feats = [c for c in use_train.columns if c not in ['ID', 'label']]
X_train,X_verify,y_train,y_verify= train_test_split(use_train[use_feats],use_train['label'],test_size=0.3,random_state=0)

1.根据特征的重要性进行特征选择

##############特征选择参数###################
selectFeatures = 200 # 控制特征数
earlyStopping = 100 # 控制早停
select_num_boost_round = 1000 # 特征选择训练轮次
#首先设置基础参数
selfParam = {
    'learning_rate':0.01, # 学习率
    'boosting':'dart', # 算法类型, gbdt,dart
    'objective':'multiclass', # 多分类
    'metric':'None',
    'num_leaves':32, # 
    'feature_fraction':0.7, # 训练特征比例
    'bagging_fraction':0.8, # 训练样本比例 
    'min_data_in_leaf':30, # 叶子最小样本
    'num_class': 3,
    'max_depth':6, # 树的最大深度
    
    'num_threads':8,#LightGBM 的线程数
    'min_data_in_bin':30, # 单箱数据量
    'max_bin':256, # 最大分箱数 
    'is_unbalance':True, # 非平衡样本
    'train_metric':True,
    'verbose':-1,
}
# 特征选择 ---------------------------------------------------------------------------------
def f1_score_eval(preds, valid_df):
    labels = valid_df.get_label()
    preds = np.argmax(preds.reshape(3, -1), axis=0)
    scores = f1_score(y_true=labels, y_pred=preds, average='macro')
    return 'f1_score', scores, True

train_data = lgb.Dataset(data=X_train,label=y_train,feature_name=use_feats)
valid_data = lgb.Dataset(data=X_verify,label=y_verify,reference=train_data,feature_name=use_feats)

sm = lgb.train(params=selfParam,train_set=train_data,num_boost_round=select_num_boost_round,
                      valid_sets=[valid_data],valid_names=['valid'],
                      feature_name=use_feats,
                      early_stopping_rounds=earlyStopping,verbose_eval=False,keep_training_booster=True,feval=f1_score_eval)
features_importance = {k:v for k,v in zip(sm.feature_name(),sm.feature_importance(iteration=sm.best_iteration))}
sort_feature_importance = sorted(features_importance.items(),key=lambda x:x[1],reverse=True)
print('total feature best score:', sm.best_score)
print('total feature importance:',sort_feature_importance)
print('select forward {} features:{}'.format(selectFeatures,sort_feature_importance[:selectFeatures]))
#model_feature是选择的超参数
model_feature = [k[0] for k in sort_feature_importance[:selectFeatures]]

贝叶斯优化介绍也是在建模调参过程中常用的一种方法,下面是通过贝叶斯优化进行超参数选择的代码

##############超参数优化的超参域###################
spaceParam = {
    'boosting': hp.choice('boosting',['gbdt','dart']),
    'learning_rate':hp.loguniform('learning_rate', np.log(0.01), np.log(0.05)),
    'num_leaves': hp.quniform('num_leaves', 3, 66, 3), 
    'feature_fraction': hp.uniform('feature_fraction', 0.7,1),
    'min_data_in_leaf': hp.quniform('min_data_in_leaf', 10, 50,5), 
    'num_boost_round':hp.quniform('num_boost_round',500,2000,100), 
    'bagging_fraction':hp.uniform('bagging_fraction',0.6,1)  
}
# 超参数优化 ---------------------------------------------------------------------------------
def getParam(param):
    for k in ['num_leaves', 'min_data_in_leaf','num_boost_round']:
        param[k] = int(float(param[k]))
    for k in ['learning_rate', 'feature_fraction','bagging_fraction']:
        param[k] = float(param[k])
    if param['boosting'] == 0:
        param['boosting'] = 'gbdt'
    elif param['boosting'] == 1:
        param['boosting'] = 'dart'
    # 添加固定参数
    param['objective'] = 'multiclass'
    param['max_depth'] = 7
    param['num_threads'] = 8
    param['is_unbalance'] = True
    param['metric'] = 'None'
    param['train_metric'] = True
    param['verbose'] = -1
    param['bagging_freq']=5
    param['num_class']=3 
    param['feature_pre_filter']=False
    return param
def f1_score_eval(preds, valid_df):
    labels = valid_df.get_label()
    preds = np.argmax(preds.reshape(3, -1), axis=0)
    scores = f1_score(y_true=labels, y_pred=preds, average='macro')
    return 'f1_score', scores, True
def lossFun(param):
    param = getParam(param)
    m = lgb.train(params=param,train_set=train_data,num_boost_round=param['num_boost_round'],
                          valid_sets=[train_data,valid_data],valid_names=['train','valid'],
                          feature_name=features,feval=f1_score_eval,
                          early_stopping_rounds=earlyStopping,verbose_eval=False,keep_training_booster=True)
    train_f1_score = m.best_score['train']['f1_score']
    valid_f1_score = m.best_score['valid']['f1_score']
    loss_f1_score = 1 - valid_f1_score
    print('训练集f1_score:{},测试集f1_score:{},loss_f1_score:{}'.format(train_f1_score, valid_f1_score, loss_f1_score))
    return {'loss': loss_f1_score, 'params': param, 'status': STATUS_OK}

features = model_feature
train_data = lgb.Dataset(data=X_train[model_feature],label=y_train,feature_name=features)
valid_data = lgb.Dataset(data=X_verify[features],label=y_verify,reference=train_data,feature_name=features)

best_param = fmin(fn=lossFun, space=spaceParam, algo=tpe.suggest, max_evals=100, trials=Trials())
best_param = getParam(best_param)
print('Search best param:',best_param)

经过特征选择和超参数优化后,最终的模型使用为将参数设置为贝叶斯优化之后的超参数,然后进行5折交叉,对测试集进行叠加求平均。

def f1_score_eval(preds, valid_df):
    labels = valid_df.get_label()
    preds = np.argmax(preds.reshape(3, -1), axis=0)
    scores = f1_score(y_true=labels, y_pred=preds, average='macro')
    return 'f1_score', scores, True

def sub_on_line_lgb(train_, test_, pred, label, cate_cols, split,
                    is_shuffle=True,
                    use_cart=False,
                    get_prob=False):
    n_class = 3
    train_pred = np.zeros((train_.shape[0], n_class))
    test_pred = np.zeros((test_.shape[0], n_class))
    n_splits = 5

    assert split in ['kf', 'skf'
                    ], '{} Not Support this type of split way'.format(split)

    if split == 'kf':
        folds = KFold(n_splits=n_splits, shuffle=is_shuffle, random_state=1024)
        kf_way = folds.split(train_[pred])
    else:
        #与KFold最大的差异在于,他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同。
        folds = StratifiedKFold(n_splits=n_splits,
                                shuffle=is_shuffle,
                                random_state=1024)
        kf_way = folds.split(train_[pred], train_[label])

    print('Use {} features ...'.format(len(pred)))
    #将以下参数改为贝叶斯优化之后的参数
    params = {
        'learning_rate': 0.05,
        'boosting_type': 'gbdt',
        'objective': 'multiclass',
        'metric': 'None',
        'num_leaves': 60,
        'feature_fraction':0.86,
        'bagging_fraction': 0.73,
        'bagging_freq': 5,
        'seed': 1,
        'bagging_seed': 1,
        'feature_fraction_seed': 7,
        'min_data_in_leaf': 15,
        'num_class': n_class,
        'nthread': 8,
        'verbose': -1,
        'num_boost_round': 1100,
        'max_depth': 7,
    }
    for n_fold, (train_idx, valid_idx) in enumerate(kf_way, start=1):
        print('the {} training start ...'.format(n_fold))
        train_x, train_y = train_[pred].iloc[train_idx
                                            ], train_[label].iloc[train_idx]
        valid_x, valid_y = train_[pred].iloc[valid_idx
                                            ], train_[label].iloc[valid_idx]

        if use_cart:
            dtrain = lgb.Dataset(train_x,
                                 label=train_y,
                                 categorical_feature=cate_cols)
            dvalid = lgb.Dataset(valid_x,
                                 label=valid_y,
                                 categorical_feature=cate_cols)
        else:
            dtrain = lgb.Dataset(train_x, label=train_y)
            dvalid = lgb.Dataset(valid_x, label=valid_y)

        clf = lgb.train(params=params,
                        train_set=dtrain,
#                         num_boost_round=3000,
                        valid_sets=[dvalid],
                        early_stopping_rounds=100,
                        verbose_eval=100,
                        feval=f1_score_eval)
        train_pred[valid_idx] = clf.predict(valid_x,
                                            num_iteration=clf.best_iteration)
        test_pred += clf.predict(test_[pred],
                                 num_iteration=clf.best_iteration) / folds.n_splits
    print(classification_report(train_[label], np.argmax(train_pred,
                                                         axis=1),
                                digits=4))
    if get_prob:
        sub_probs = ['qyxs_prob_{}'.format(q) for q in ['围网', '刺网', '拖网']]
        prob_df = pd.DataFrame(test_pred, columns=sub_probs)
        prob_df['ID'] = test_['ID'].values
        return prob_df
    else:
        test_['label'] = np.argmax(test_pred, axis=1)
        return test_[['ID', 'label']]

use_train = all_df[all_df['label'] != -1]
use_test = all_df[all_df['label'] == -1]
# use_feats = [c for c in use_train.columns if c not in ['ID', 'label']]
use_feats=model_feature
sub = sub_on_line_lgb(use_train, use_test, use_feats, 'label', [], 'kf',is_shuffle=True,use_cart=False,get_prob=False)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值