🤵 Author :Horizon John
✨ 编程技巧篇:各种操作小结
🎇 机器视觉篇:会变魔术 OpenCV
💥 深度学习篇:简单入门 PyTorch
🏆 神经网络篇:经典网络模型
💻 算法篇:再忙也别忘了 LeetCode
[ 目标检测 ] 经典网络模型4——SSD 详解与复现
🚀 Single Shot Detector
SDD
是一种利用 单一深度神经网络
检测图像中的目标的方法 ;
它的一个关键特征是:使用 多尺度卷积边界框 输出 附加到网络顶部的多个特征图上 ;
它将边界框的输出空间离散化为一组默认框,每个特征图位置具有不同的纵横比和比例 ;
在预测时,网络会根据每个默认框中的对象类别生成分数,并对该框进行调整,以更好地匹配对象的形状 ;
网络结合了来自 不同分辨率
的 多个特征
映射的预测,自然地处理各种大小的对象 ;
较 R-CNN
系列网络使用的 区域建议
( Region Proposal ) 方法,SSD完全消除了提议生成和随后的像素或特征重采样阶段 ;

🔗 论文地址:SSD: Single Shot MultiBox Detector
🚀 SSD 详解
🎨 提出背景
截至目前,最先进的目标检测系统:假定边界框,为每一个边界框重新采样像素或特征,最后再利用高质量的分类器进行分类 ;
但对于嵌入式系统来说,这些算法的计算量依然很大,对于实时应用程序来说依旧很慢 ,最快的高精度检测网络 Faster R-CNN 也只有 7 FPS
;
基于此提出了一种目标检测网络,它不再使用为每一个假定的边界框重新采样,依然能保证较好的准确率,并且检测速度提升至了 59 FPS
;
🚩 核心思想
SSD网络基于前馈神经网络,首先生成固定大小的建议框集合,并对框内存在的对象进行评分,最后使用非极大值抑制的方法生成最终的检测结果 ;
- 在特征图上使用小的卷积过滤器,预测
类别分数
和 一组固定的标准框偏移量
; - 从
多尺寸特征图
上生成多个预测,并通过横纵比直接分离预测结果,以达到高精度检测 ;
🎨 网络结构
🚩 结构特点
- 使用 多尺寸特征图(Multi-scale feature maps);
- 使用 卷积预测器(Convolutional predictors);
- 使用 多个标准框和横纵比(Default boxes and aspect ratios);
Default boxes and aspect ratios :
🚩 结构框图
🚩 模型分析
数据增强
至关重要 ;先验框种类
越多效果越好 ;Atrous
版本的VGG16保证检测结果的同时具有20%速度的提升 ;- 不同
分辨率
的多个输出层结果更优 ;
🚀 SSD 复现
# Here is the code :
# 后 续 更 新 ~
输出结果:
在这里插入代码片