简单入门 PyTorch
文章平均质量分 92
使用PyTorch开始深度学习之旅~
Horizon John
欢迎交流讨论~
展开
-
DNN、CNN、RNN
DNN(深度神经网络)CNN(卷积神经网络)RNN(循环神经网络)原创 2021-12-31 19:46:52 · 563 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture01 基本概括
《PyTorch深度学习实践》Lecture01 Overview(基本概括)文章目录Machine Learning基本概括机器学习四大任务监督学习classification(分类)和 regression (回归)无监督学习clustering (聚类)和 dimensionality reduction (降维),相关资料和代码详见:原创 2021-12-26 15:33:11 · 1372 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture02 线性模型
《PyTorch深度学习实践》Lecture 02 Linear_Model(线性模型)文章目录Linear Modle(线性模型)利用 Y = W * X 建立一个简单的线性模型用来拟合给定的三组数据,并进行预测,在这过程种使用np.meshgrid()函数变化坐标矩阵后进行可视化展示,相关资料代码详见:原创 2021-12-26 17:26:51 · 1196 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture03 梯度下降
《PyTorch深度学习实践》Lecture 03 Gradient_Descent(梯度下降)文章目录Gradient Descent(梯度下降)通过 梯度下降法 来一步步的迭代求解,得到最小化的损失函数和模型参数值,在这里涉及到学习率的概念,相关资料和代码详见:原创 2021-12-26 17:36:16 · 662 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture04 反向传播
《PyTorch深度学习实践》Lecture 04 Back_Propagation(反向传播)文章目录Back_Propagation(反向传播)前面所说的都是深度学习中 前向传播 的过程,即网络参数向前计算得到 Loss值 的过程;而这里提到 反向传播 的过程,顾名思意,就是网络参数向后计算的过程;通过反向求导得到偏导数,找到 梯度下降 的方向,相关资料和代码详见:原创 2021-12-26 17:40:15 · 746 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture05 线性回归
《PyTorch深度学习实践》Lecture 05 Linear_Regression_with_PyTorch(使用PyTorch实现线性回归)文章目录Linear_Regression_with_PyTorch(使用PyTorch是实现线性回归),概述了如何利用PyTorch实现线性模型的回归计算,相关资料和代码详见:原创 2021-12-26 17:43:05 · 867 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture06 逻辑斯蒂回归
《PyTorch深度学习实践》Lecture 06 Logistic_Regression(逻辑斯蒂回归)文章目录Logistic_Regression(逻辑斯蒂回归)逻辑斯蒂回归 和 线性回归 之间的区别在于 激活函数 σ();引入激活函数就能在 神经网络中引入非线性,从而构造出 非线性模型,强化网络的学习能力,相关资料和代码详见:原创 2021-12-27 10:55:12 · 656 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture07 多维特征的输入
《PyTorch深度学习实践》Lecture 07 Multiple_Dimension_Input(多维特征的输入)文章目录Multiple_Dimension_Input(多维特征输入)当遇到多维特征时如何利用矩阵知识实现PyTorch网络搭建,我们可以得到下式之间的转变:N 个 Samples以及 Mini-Batch,这里使用了Sigmoid作为激活函数,相关资料和代码详见:原创 2021-12-27 10:55:20 · 590 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture08 数据集加载 Dataset 与 Dataloader
《PyTorch深度学习实践》Lecture 08 Dataset_and_Dataloader文章目录Dataset_and_Dataloader学会如何使用 Dataset_and_Dataloader 初始化数据集,利用 Dataloader 读取数据 基本步骤 :1)创建 Dataset 对象2)将 Dataset 对象作为参数传递到 Dataloader 中相关资料和代码详见:原创 2021-12-27 10:55:24 · 611 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture09 Softmax 分类器
《PyTorch深度学习实践》Lecture 09 Softmax_Classifier文章目录Softmax_Classifier使用 Softmax 作为分类器解决 " 多分类(classification)" 问题;并对Logistic与Softmax比较进行简单的比较,概述了CrossEntropyLoss()函数,最后使用经典数据集:MNIST DataSet 利用PyTorch进行构建网络,相关资料和代码详见:原创 2021-12-27 10:55:31 · 3555 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture10 CNN基础篇
《PyTorch深度学习实践》Lecture 10 Basic_CNN文章目录Basic_CNN(CNN网络基础)卷积神经网络 CNN(Convolutional Neural Network)最重要的是卷积(convolution)操作,用于提取图像特征(Feature maps)一般是由 输入层、卷积层、激活函数、池化层、全连接层 组成;详细概述了各层,并对卷积、步长、填充、通道、感受野、池化等进行了可视化讲述,相关资料和代码详见:原创 2021-12-28 10:18:34 · 1072 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture11 CNN进阶篇
《PyTorch深度学习实践》Lecture 11 Advanced_CNN文章目录Advanced_CNNGoogLeNet是google推出的基于 Inception Module 的深度神经网络模型,在2014年的ImageNet竞赛中夺得了冠军,这里详细概述了Inception Moduel,并利用PyTorch实现,相关资料和文档详见:原创 2021-12-28 10:18:48 · 826 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture12 RNN基础篇
《PyTorch深度学习实践》Lecture 12 Basic_RNN文章目录Basic_RNN(RNN基础),概述了RNN循环神经网络和RNN Cell,并利用PyTorch搭建了RNN Cell和RNN实现hello字符的转换,最后利用Embedding进行了实验,对比Softmax结果,相关资料和代码详见:原创 2021-12-28 10:23:50 · 1391 阅读 · 0 评论 -
PyTorch深度学习实践 Lecture13 RNN进阶篇
视频链接:Lecture 13 RNN_Classifier文档资料://Here is the link:课件链接:https://pan.baidu.com/s/1vZ27gKp8Pl-qICn_p2PaSw提取码:cxe4文章目录RNN_Classifier概述附录:相关文档资料RNN_Classifier概述附录:相关文档资料PyTorch 官方文档: PyTorch DocumentationPyTorch 中原创 2021-12-28 10:24:04 · 1014 阅读 · 0 评论