[ 数据集 ] VOC 2012 数据集介绍


🤵 AuthorHorizon John

编程技巧篇各种操作小结

🎇 机器视觉篇会变魔术 OpenCV

💥 深度学习篇简单入门 PyTorch

🏆 神经网络篇经典网络模型

💻 算法篇再忙也别忘了 LeetCode


VOC 2012

它从根本上说是一个有监督的学习问题,提供了一组标记图像的训练集。

包括二十个对象类别:

Person :person
Animal :bird, cat, cow, dog, horse, sheep
Vehicle :aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor :bottle, chair, dining table, potted plant, sofa, tv/monitor

有三个主要的对象识别竞赛:分类检测分割

VOC 2012

官方链接 :VOC 2012
下载链接 : training / validation data
官方文档 : (VOC2012) 开发套件


分类 / 检测

(1)分类 :对于 20 个类中的每一个,预测测试图像中该类示例的存在/不存在 ;
(2)检测 :从测试图像中的 20 个目标类别中预测每个对象的边界框和标签 ;

classes


分割

(1)分割:生成逐像素分割,给出在每个像素处可见的对象类别,否则为“背景” ;


VOC 2012 文件夹介绍

VOC 2012 文件夹下一共包括 5 个子文件夹
在这里插入图片描述

1)Annotations

文件为 XML格式 的图片标注信息

在这里插入图片描述

以其中一个为例:

在这里插入图片描述

里面包含的信息有:图像数据的 名称、地址,目标的种类、位置等 ;


2)ImageSets

ImageSets 下有 4 个子文件夹

在这里插入图片描述

train.txt:训练集相关数据
val.txt:验证集相关数据
trainval.txt:训练集与验证集合并后的相关数据

Action

1、Action:与人体动作相关的数据,包括三个部分(train.txt、trainval.txt、val.txt),对应的动作有 jumping、phoning 等 ;

在这里插入图片描述

用于 人体动作分类竞赛 (Action Classification Competition)

在这里插入图片描述

Layout

2、Layout:与人体部位相关的数据,包括三个部分(train.txt、trainval.txt、val.txt),对应的部位有 head、hand、feet 等 ;

在这里插入图片描述

用于 人体部位检测竞赛 (Person Layout Taster Competition)

在这里插入图片描述

Main

3、Main:与目标检测相关的数据,包括三个部分(train.txt、trainval.txt、val.txt),一共包括 20 个类别 ;

在这里插入图片描述

用于 图像分类 / 检测竞赛 (Classification/Detection Competitions)

在这里插入图片描述

Segmentation

4、Segmentation:与图像分割相关的数据,包括三个部分(train.txt、trainval.txt、val.txt)

在这里插入图片描述

用于 图像分割竞赛 (Segmentation Competition)

在这里插入图片描述


3)JPEGImages

VOC 2012 数据集提供的所有的 .jpg 格式的图片,训练集和测试集一共 17125 张 ;

命名格式:“年份_编号.jpg”,与 1)Annotations 中的标签相对应,图片的像素尺寸不相同 ;

在这里插入图片描述


4)SegmentationClass

语义分割标注掩模图,一共 2913 张 ;

在这里插入图片描述


5)SegmentationObject

实例分割标注掩模图,一共 2913 张 ;

在这里插入图片描述


以其中一张 2007_000129.jpg 为例,将 原始图像语义分割图像实例分割图像 放在一起进行比较 :

在这里插入图片描述

原始图像(JPEGImages) :数据标签都存放在 Annotations 文档内 ;

语义分割图像(SegmentationClass) :同一物体类别颜色一样,不同物体类别颜色不同 ;

实例分割图像 (SegmentationObject) :同一物体类别 和 不同物体类别颜色都不同 ;

2007_000129.jpg 对应的 Annotations 文件:
在这里插入图片描述
<size>:图片尺寸 width、height、depth ;

<object>:图片内的目标 (bicycle、person 各有三个 object );

<name> :目标名称,对应着 bicycle、person ;

<pose> :拍摄角度

<truncated> :目标检测框是否被截断(1为是,0为否);

<difficult> :目标是否难以识别(1为是,0为否);

<bndbox> :bounding box 目标框的位置,对应着 左上角 和 右下角 的两个坐标 ;



VOC2012数据集是一个常用的计算机视觉数据集,用于目标分类、检测和分割任务。根据引用\[1\],VOC2012数据集包含了训练集、验证集和训练集与验证集的图像信息。其中,Segmentation文件夹存放的是目标分割图像信息,包括train.txt(训练集1464个)、val.txt(验证集1449个)和trainval.txt(训练集+验证集2913个)。 根据引用\[2\],VOC2012数据集的文件夹结构包括Annotations、ImageSets、ActionLayout、Main和Segmentation。其中,Annotations文件夹存放的是目标的标注信息;ImageSets包含了不同任务的图像集合;ActionLayout存放的是动作布局相关的信息;Main存放的是分类、检测和分割任务的主要文件;Segmentation存放的是分割任务的图像和标注信息。 关于目标检测网络的训练流程,根据引用\[3\],大致包括以下步骤: 1. 设置各种超参数,如学习率、批大小等。 2. 定义数据加载模块,用于加载训练数据。 3. 定义网络模型,用于目标检测。 4. 定义损失函数,用于衡量预测结果与真实标签之间的差异。 5. 定义优化器,如Adam或SGD,用于更新网络参数。 6. 遍历训练数据,进行预测、计算损失和反向传播更新参数。 7. 训练过程中可以打印损失值等信息进行监控。 8. 保存训练好的模型。 以上是关于VOC2012数据集和目标检测网络训练流程的简要介绍。 #### 引用[.reference_title] - *1* [PASCAL VOC2012数据集分析](https://blog.csdn.net/One2332x/article/details/121915764)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [[ 数据集 ] VOC 2012 数据集介绍](https://blog.csdn.net/weixin_45084253/article/details/124332044)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [一、目标检测入门VOC2012](https://blog.csdn.net/qq_56551150/article/details/126508127)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Horizon John

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值