题目描述:
搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2k件过去就行了.但还是会很累,因为2k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2 = 9.现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度),请告诉他吧.
输入:
每组输入数据有两行,第一行有两个数n,k(2<=2*k<=n<2000).第二行有n个整数分别表示n件物品的重量(重量是一个小于2^15的正整数).
输出:
对应每组输入数据,输出数据只有一个表示他的最少的疲劳度,每个一行.
思路:
- 分析可得,如果想要疲劳值最小,那么每次搬的物品必须是重量相差最小,那么首先要对数据先排序。
- 用二维数组dp[ i ][ j ]表示前 i 件物品搬 j 次的最小疲劳度,首先我们可以知道前两件搬一次,最小疲劳度就是前两个重量之差的平方,那么前3个物品搬一次呢?这时就体现到了动态规划的优点了,第三件物品可以选也可以不选,如果不选,就是前两件物品搬一次时的结果,已经算出来了,不需要冲重复计算,选的话,那么一定是第二件和第三件物品之差的平方,以此类推,前4件物品,就是求前3件的最小值和第3第4件物品谁更小,一直到第n件
- 那么搬两次呢,搬两次一定是从4件开始,4件搬两次最小值就是1和2,3和4,那么5件搬两次呢?如果不选第5件,答案就是前4件搬两次,如果选,就是前三件搬一次加上第4和第5件。一直到n件搬k次
- 转移方程:
dp[j][i]=min(dp[j-1][i],dp[j-2][i-1]+pow(a[j]-a[j-1],2));
代码:
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int n,k,ans;
int a[2005];
int dp[2001][1001];//dp[i][j]表示前i件物品,搬j次最低疲劳度
int min(int x,int y)
{
return x<y?x:y;
}
int main()
{
while(cin>>n>>k)
{
ans=0;
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1,a+n+1);
for(int i=1;i<=k;i++)//搬的次数
{
dp[i*2][i]=dp[i*2-2][i-1]+pow(a[i*2]-a[i*2-1],2);//先计算前i*2件搬i次消耗的疲劳值
for(int j=i*2+1;j<=n;j++)//物品数
{
dp[j][i]=min(dp[j-1][i],dp[j-2][i-1]+pow(a[j]-a[j-1],2));
}
}
cout<<dp[n][k]<<endl;
}
return 0;
}