题意: 给你一个长度为 N 的 01 字符串和一个整数 K 每次操作你可以选择一个字符并改变其状态 现要使字符串中相邻 1 的距离为 K
,问最少需要操作几次
思路:
状态:
dp[i][0] 表示第i项之前都符合要求且第i项为0
dp[i][1] 表示第i项之前都符合要求且第i项为1
状态转移:
dp[i][0] 可以由dp[i-1][0] dp[i-1][1] 得到
dp[i][1] 两种情况:
1. i之前都为0;
2. 2.i-k为1,[i-k,i-1]都为0;
可以求一个前缀和pre[i] 表示i之前1的数量
方程 :
dp[i][0]=min(dp[i-1][0],dp[i-1][1])+(s[i]==‘1’);
dp[i][1]=min(dp[i-k][1]+pre[i-1]-pre[i-k],pre[i-1])+(s[i] ==‘0’);
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e6+10;
char s[N];
int dp[N][2];
int pre[N];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,k;
scanf("%d%d%s",&n,&k,s+1);
for(int i=1;i<=n;i++)
{
pre[i]=pre[i-1]+(s[i]=='1');
}
for(int i=0;i<=n;i++) dp[i][0]=dp[i][1]=0x3f3f3f3f;
dp[0][0]=0;
for(int i=1;i<=n;i++)
{
dp[i][0]=min(dp[i-1][0],dp[i-1][1])+(s[i]=='1');
if(i>k)
dp[i][1]=min(dp[i-k][1]+pre[i-1]-pre[i-k],pre[i-1])+(s[i] =='0');
else
dp[i][1]=pre[i-1]+(s[i] =='0');
}
printf("%d\n",min(dp[n][0],dp[n][1]));
for(int i=1;i<=n;i++) pre[i]=0;
}
}
贪心:
定义 sum 为起初字符串中 1 的总个数
我们可以先将整个字符串都变为 0,那么此时的代价为 sum
由于相邻的 1 的距离为 K,所以具有周期性质,且每个周期内 1 的个数只有一个
所以我们可以枚举每个周期的对应位置并将其改变为 1
每次枚举我们定义一个 cnt = 0 ,其意义为可以减少的代价
当 s[i] == ‘1’ 时,cnt – , 即减去起初把 s[i] 变为 0 的代价,当 s[i] == ‘0’ 时,cnt ++ , 即把 s[i] 变为 1 的代价
每操作完一个周期区间,我们更新一次 cnt 和 ans,cnt = min(cnt , 0) , ans = min(ans , sum + cnt) cnt = 0 即表示前面的周期区间对应位置的值保持为 0
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e6+10;
char s[N];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n,k;
int sum=0,ans=0x3f3f3f3f;
scanf("%d%d%s",&n,&k,s+1);
for(int i=1;i<=n;i++) sum+=(s[i]=='1');
for(int i=1;i<=k;i++)
{
int cnt=0;
for(int j=i;j<=n;j+=k)
{
if(s[j]=='1') cnt--;
else cnt++;
cnt=min(cnt,0);
ans=min(ans,sum+cnt);
}
}
cout<<ans<<endl;
}
}