HADOOP之完全分布式配置

本文详细介绍了Hadoop2.x与Hadoop1.x的主要区别,包括MapReduce角色的变化和资源调度的分离。接着,文章提供了完全分布式Hadoop集群的搭建步骤,涵盖环境配置、集群分发脚本、配置文件详解以及启动和管理脚本的编写。此外,还强调了在生产环境中避免使用本地模式,并提供了伪分布式和完全分布式模式的说明。
摘要由CSDN通过智能技术生成

Hadoop1.x和Hadoop2.x的区别

Hadoop1.x主要组成部分是MapReduce 和 HDFS,HDFS负责数据存储,Mapreduce不仅负责分布式计算,而且负责资源的调度;
但是在Hadoop2.x中,HDFS依旧负责数据存储,
MapReduce只负责分布式计算,资源调度由Yarn负责,这样就减轻了MapReduce的负担。

Hadoop运行模式

  • 本地模式:单机运行,生产环境下不用。
  • 伪分布式:也是单机运行,但是具备Hadoop集群所有功能,一台服务器模拟一个分布式的环境。
  • 完全分布式:多台服务器组成的分布式环境。

Hadoop完全分布式搭建

搭建过程总览

一、 运行环境搭建

  1. 模板虚拟机环境准备
  2. 克隆三台虚拟机
  3. 安装Xshell和Xftp
  4. 安装JDK
  5. 安装hadoop

二、配置分布式集群

  1. 配置SSH无密登录
  2. 编写集群分发脚本
  3. 集群配置
  4. 启动集群
  5. 写集群启停脚本

模板虚拟机环境准备

  1. 安装VMware 和 CentOS(也可以用Ubantu,看个人对哪个更熟悉,笔者使用的是CentOS);

  2. 新建虚拟机硬件设置
    IP地址:192.168.10.100
    主机名称:hadoop100
    内存:1G
    硬盘:50G

    如果计算机内存足够,可以设为2G或者4G。由于后期需要同时启动三个节点,且笔者内存不够,故选择1G
    硬件环境设置好后启动虚拟机,可以ping通外网即可。

  3. 安装epel-release(类似于一个软件仓库)

    yum install -y epel-release
    
  4. 关闭防火墙

    systemctl stop firewalld
    systemctl disable firewalld.service
    
  5. 创建用户并修改密码
    出于安全考虑,尽量使用自己创建的新用户,少用root用户;密码尽量简单容易记住。

    useradd yss     //创建用户
    passwd yss      //设置密码
    
  6. 配置用户使其具有root权限

    vim /etc/sudoers
    

    在%wheel这一行下添加:用户名 ALL=(ALL) NOPASSWD:ALL

  7. 卸载虚拟机自带的JDK

    rpm -qa | grep -i java | xargs -n1 rpm -e --nodeps
    
    解释: % rpm -qa:查询所安装的所有 rpm 软件包
      % grep -i:忽略大小写
      % xargs -n1:表示每次只传递一个参数
      % rpm -e –nodeps:强制卸载软件
    
  8. 重启虚拟机

    reboot
    

克隆三台虚拟机(以hadoop102为例)

1.在VMware中选择 虚拟机——>管理——>克隆 (克隆虚拟机时要关闭hadoop100 )
在这里插入图片描述

  1. 修改克隆虚拟机的IP地址
    vim /etc/sysconfig/network-scripts/ifcfg-ens33
    
    修改部分:
    BOOTPROTO=static
    IPADDR=192.168.10.102
    GATEWAY=192.168.10.2
    DNS1=192.168.10.2
  2. 修改克隆虚拟机的主机名称
    vim /etc/hostname	%hadoop102
    
  3. 配置Linux克隆主机名映射hosts文件
    vim /etc/hosts
    
    添加:主机IP	主机名
    
  4. 重启hadoop102
    reboot
    
  5. 修改windows的主机映射文件hosts
    路径:C:\Windows\System32\drivers\etc

如果修改不成功,可以将文件拷贝到桌面,用Notepad++或者Pycharm或者IDEA修改(不要用记事本),然后拷贝回去替换重名文件就可以了。

安装Xshell 和Xftp

Xshell :终端模拟器
Xftp:文件传输工具,用于在Windows和Linux间传输文件

安装JDK

  1. 使用 XShell 和 Xftp 将 windows 中的 JDK 导入 Linux 中的 /opt /software 下
  2. 解压JDK到/opt/module目录下
    tar -zxvf jdk-8u212-linux-x64.tar.gz -C /opt/module/
    
  3. 配置JDK环境变量
    sudo vim /etc/profile.d/my_env.sh
    
    环境变量配置如下:
  4. 使JDK生效
    source /etc/profile
    
  5. 测试
    命令行输入 java ,不报错即可。

安装Hadoop

  1. 使用 XShell 和 Xftp 将 windows 中的 hadoop 导入 Linux 中 /opt/software 下
  2. 解压JDK到/opt/module目录下
    tar -zxvf hadoop-3.1.3.tar.gz -C /opt/module/
    
  3. 将hadoop添加到环境变量
    sudo vim /etc/profile.d/my_env.sh
    
    在这里插入图片描述
  1. 使其生效:
    source /etc/profile
    
  2. 测试
    hadoop version 
    

配置SSH无密登录

  1. 生成公钥和私钥
    ssh-keygen -t rsa
    
  2. 将公钥拷贝到其他主机
    ssh-copy-id hadoop102
    ssh-copy-id hadoop103
    ssh-copy-id hadoop104
    

编写集群分发脚本xsync

scp 可以实现服务器与服务器之间的数据拷贝。
rsync 主要用于备份和镜像。具有速度快、避免复制相同内容和支持符号链接的优点。

  1. 在/home/atguigu/bin 目录下创建 xsync 文件
    mkdir bin
    cd bin
    vim xsync
    

  1. 修改脚本权限

    chmod 777 xsync
    
  2. 将脚本复制到/bin 中,以便全局调用

    sudo cp xsync /bin/
    
  3. 同步环境变量配置(root 所有者)

    sudo ./bin/xsync/etc/profile.d/my_env.sh
    source /etc/profile	
    
  4. 将JDK和hadoop分发给hadoop103和hadoop104

    xsync /opt/module
    

集群配置

为了防止虚拟机卡顿,将NameNode、SecondaryNameNode和ResourceManger安装在不同主机,后续编写一个脚本同时启动hdfs和yarn

配置文件core-site.xml、hdfs-site.xml、yarn-site.xml、mapred-site.xml和workers
(hadoop3.x:workers	    hadoop2.x:slaves)
***!!! 配置文件要仔细!!!***
  1. core-site.xml
    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <configuration>
    	<!-- 指定 NameNode 的地址 -->
    	<property>
    		<name>fs.defaultFS</name>
    		<value>hdfs://hadoop102:8020</value>
    	</property>
    	<!-- 指定 hadoop 数据的存储目录 -->
    	<property>
    		<name>hadoop.tmp.dir</name>
    		<value>/opt/module/hadoop-3.1.3/data</value>
    	</property>
    	<!-- 配置 HDFS 网页登录使用的静态用户为 atguigu -->
    	<property>
    		<name>hadoop.http.staticuser.user</name>
    		<value>atguigu</value>
    	</property>
    </configuration>
    
  2. hdfs-site.xml
    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <configuration>
    	<!-- nn web 端访问地址-->
    	<property>
    		<name>dfs.namenode.http-address</name>
    		<value>hadoop102:9870</value>
    	</property>
    	<!-- 2nn web 端访问地址-->
    	<property>
    		<name>dfs.namenode.secondary.http-address</name>
    		<value>hadoop104:9868</value>
    	</property>
    </configuration>
    
  3. yarn-site.xml
    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
    <configuration>
    	<!-- 指定 MapReduce 程序运行在 Yarn 上 -->
    	<property>
    		<name>mapreduce.framework.name</name>
    		<value>yarn</value>
    	</property>
    	<!-- 历史服务器端地址 -->
    	<property>
    	 <name>mapreduce.jobhistory.address</name>
    	 <value>hadoop102:10020</value>
    	</property>
    	<!-- 历史服务器 web 端地址 -->
    	<property>
    	 <name>mapreduce.jobhistory.webapp.address</name>
    	 <value>hadoop102:19888</value>
    	</property>
    </configuration>
    
  4. mapred-site.xml
    <?xml version="1.0" encoding="UTF-8"?>
    <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> 
    <configuration>
    	<!-- 指定 MR 走 shuffle -->
    	<property>
    		<name>yarn.nodemanager.aux-services</name>
    		<value>mapreduce_shuffle</value>
    	</property>
    	<!-- 指定 ResourceManager 的地址-->
    	<property>
    		<name>yarn.resourcemanager.hostname</name>
    		<value>hadoop103</value>
    	</property>
    	<!-- 环境变量的继承 -->
    	<property>
    		<name>yarn.nodemanager.env-whitelist</name>
    		<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CO
    		NF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAP
    		RED_HOME</value>
    	</property>
    	<!-- 开启日志聚集功能 -->
    	<property>
    	 <name>yarn.log-aggregation-enable</name>
    	 <value>true</value>
    	</property>
    	<!-- 设置日志聚集服务器地址 -->
    	<property> 
    	 <name>yarn.log.server.url</name> 
    	 <value>http://hadoop102:19888/jobhistory/logs</value>
    	</property>
    	<!-- 设置日志保留时间为 7 天 -->
    	<property>
    	 <name>yarn.log-aggregation.retain-seconds</name>
    	 <value>604800</value>
    	</property>
    </configuration>
    
  5. workers
    hadoop102
    hadoop103
    hadoop104
    
  6. 在集群上分发配置好的配置文件
    xsync /opt/module/hadoop-3.1.3/etc/hadoop/
    

启动集群

第一次启动:格式化NameNode

hdfs namenode -format

启动HDFS

sbin/start-dfs.sh
web端:http://hadoop102:9870

启动YARN

sbin/start-yarn.sh
web端:http://hadoop103:8088

验证启动成功

jps

如果显示NameNode、DataNode、SencondaryNameNode、NodeManger、ResourceManger都启动了,即为成功。

如果集群出现崩溃,可以停用集群,删除DataNode中的信息(可以在hdfs-site.xml中找到目录,默认为\tmp),然后格式化,重新启动集群

写集群启停脚本

编写启停脚本:

cd bin/
	vim myhadoop.sh

在这里插入图片描述

chmod 777 myhadoop.sh

编写jps查看脚本

cd bin/
	vim jpsall

chomd 777 jpsall

集群分发

xsync bin/

启动集群:myhadoop.sh start

查看jps:jpsall
在这里插入图片描述

停用集群:myhadoop.sh stop

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值