Task4 - fastText入门到实战(一篇就够)

前言

  • One-hot
  • Bag of Words
  • N-gram
  • TF-IDF

都存在一定的问题:转换得到的向量维度很高,需要较长的训练实践;没有考虑单词与单词之间的关系,只是进行了统计。

与这些表示方法不同,深度学习也可以用于文本表示,还可以将其映射到一个低纬空间。其中比较典型的例子有:FastText、Word2Vec和Bert。在本章我们将介绍FastText。

FastText入门篇

定义

FastText是一种典型的深度学习词向量的表示方法,它非常简单通过Embedding层将单词映射到稠密空间,然后将句子中所有的单词在Embedding空间中进行平均,进而完成分类操作。

所以FastText是一个三层的神经网络,输入层、隐含层和输出层。
在这里插入图片描述

优点

FastText在文本分类任务上,是优于TF-IDF的:

  • FastText用单词的Embedding叠加获得的文档向量,将相似的句子分为一类
  • FastText学习到的Embedding空间维度比较低,可以快速进行训练

资料

models.fasttext – FastText model
论文Bag of Tricks for Efficient Text Classification
GitHub的官方文档
认识 fasttext 和 初步使用

安装

pip install fasttext

有报错的!!戳这里

FastText实战篇

参数详解

from fastText import train_unsupervised
model = train_unsupervised(input, model='skipgram', lr=0.05, 
                            dim=100, ws=5, epoch=5, minCount=5, 
                            wordNgrams=1, loss='ns', bucket=2000000, 
                            thread=12, lrUpdateRate=100, t=0.0001, 
                            label='__label__', verbose=2, 
                            pretrainedVectors='')

以fastText中的无监督训练函数为例,详细介绍各个参数的含义:

  1. model: 首先是模型的选择,skip-gram 以及 CBOW。其中skip-gram是给定当前词汇预测上下文单词,而CBOW则是通过上下文预测当前单词。官方给的建议是 skip-gram比较快,但是CBOW虽然比较慢,但是精度会高一点。
  2. lr: 学习率的选择需要调试,一般会在0.1左右,太高会报错,太低会训练的比较慢。
  3. epoch: epoch 要与 lr 结合考虑,一般不需要超过50次。
  4. dim: 得到的向量的维度,语料比较大的话,设置为300,一般语料相应的降低,具体的多大规模设置多少维度,可以尝试50到300,step=50 测试。
  5. ws, window size, 表示当前词与预测词在一个句子中的最大距离是多少。context window,比如 ws=5,那么是只考虑前后各两个单词 + 当前单词=5, 还是前后各5个单词+当前=11个单词? 这个需要看源码确认一下。
  6. wordNgrams,默认是使用 1-gram,也就是单独的词,可以尝试 bi-gram(也就是wordNgrams=2),也就是每两个word作为一个unit,会导致词数增加。如果英文的可以考虑,因为英文的每个word就是一个单词,而**中文(建议是1)**的话则是再分好词的基础上进行训练,可以直接设置为1就好,当然可以测试 bi-gram 的情况。
  7. loss 默认是 negtive sample, 含义是普通的softmax方法,再输出层每次再保留目标单词的同时,不采用所有的词,而是仅激活其中的一部分(比如100个)单词同 目标单词 作为输出层维度(总词数)。这个可以进行测试,虽然默认的是 ns, 但是看网上demo,用hs的要更多一些,可以进行实验对比。
  8. bucket, 基本没有介绍,应该是最多处理多少个词,一般默认就好了。
  9. minCount, 这个有时候我们比较关心,就是词频处理,默认是5,也就是词频小于5的词汇我们都不考虑(直接删除掉),这里一般如果语料比较大的话,一般这是为1就好了,不用考虑,词频太低,基本学习不到。

举例

import pandas as pd
from sklearn.metrics import f1_score

# 转换为FastText需要的格式
train_df = pd.read_csv('../data/train_set.csv', sep='\t', nrows=15000)
train_df['label_ft'] = '__label__' + train_df['label'].astype(str)
train_df[['text','label_ft']].iloc[:-5000].to_csv('train.csv', index=None, header=None, sep='\t')

import fasttext
model = fasttext.train_supervised('train.csv', lr=1.0, wordNgrams=2, 
                                  verbose=2, minCount=1, epoch=25, loss="hs")

val_pred = [model.predict(x)[0][0].split('__')[-1] for x in train_df.iloc[-5000:]['text']]
print(f1_score(train_df['label'].values[-5000:].astype(str), val_pred, average='macro'))

FastText参数优化

  1. loss function 选用 hs(hierarchical softmax)要比 ns(negative sampling)训练速度更快,准确率也更高

  2. wordNgram 默认为1,建议设置为 2 或以上更好

  3. 如果词数不是很多,可以把 bucket 设置小一些,否则会预留太多的 bucket 使模型太大

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值