题解
两个整数的 汉明距离 指的是这两个数字的二进制数对应位不同的数量。
计算一个数组中,任意两个数之间汉明距离的总和。
示例:
输入: 4, 14, 2
输出: 6
解释: 在二进制表示中,4表示为0100,14表示为1110,2表示为0010。(这样表示是为了体现后四位之间关系)
所以答案为:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.
注意:
数组中元素的范围为从 0到 109。
数组的长度不超过 104。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/total-hamming-distance
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题解
方法一:逐位统计
步骤
1.设定二进制数的范围,因为数组元素的最大值为109,这里可以设置二进制数为30位,因为109<230
2.使用位运算,逐一比较数组元素的每一位二进制数是否为1,这里可以使用(nums[j] >> i) & 1判断,
计算出当前位上为1的数组元素有几个
3.每记完一位,便计算不同的数量,这里可以使用c * (numsSize - c),numsSize为数组元素个数,
4.2~3步骤不断进行,对结果进行累加,便可得到答案
代码
class Solution {
public int totalHammingDistance(int[] nums) {
//找到数组中的最大值并计算其二进制位
//避免从第32位开始计算
int cnt=0,maxE=Arrays.stream(nums).max().getAsInt();
while(maxE>0){
cnt++;
maxE>>=1;
}
int ans=0,n=nums.length;
for(int i=0;i<cnt;i++){
//c表示第i位为1的数量
int c=0;
for(int j=0;j<n;j++){
//数组中第i位是否为1
c+=(nums[j]>>i)&1;
}
//n-c表示第i为为0的数量
ans+=c*(n-c);
}
return ans;
}
}
复杂度分析
-
时间复杂度:O(n⋅L)。其中n是数组nums 的长度,L 为数组中最大的数的二进制长度从第0位到最后一位 1,这里L=30。
-
空间复杂度:O(1)。
参考:- https://leetcode-cn.com/problems/total-hamming-distance/solution/yi-ming-ju-chi-zong-he-wei-yun-suan-de-l-qarm/