离散数学——关系

这篇博客详细介绍了离散数学中的关系概念,包括序偶、笛卡尔积及其性质。接着,讨论了关系的表示方法如关系矩阵,以及关系的复合、逆运算和闭包运算。文章还深入讲解了等价关系、相容关系、偏序关系和全序关系的定义、性质和应用,例如通过模4同余关系展示了等价类的划分。此外,还提到了相容类、极大相容类以及偏序集的哈塞图表示法。
摘要由CSDN通过智能技术生成

序偶与笛卡儿积

两个具有固定次序的元素 a,b 组成一个有序对被称为 序 偶 \textcolor{red}{序偶} ,记作 < a , b > \textcolor{red}{<a,b>} <ab>,其中 a 称作第一个元素,b 称作第二个元素

任意给定两个集合 A 和 B ,所有第一元素属于 A,第二元素属于 B 的序偶所组成的集合,称为 A 和 B 的 笛 卡 尔 积 \textcolor{red}{笛卡尔积} ,记作 A × B \textcolor{red}{A×B} A×B
A × B = { < x , y > ∣ x ∈ A , y ∈ B } A×B=\{<x,y>|x∈A,y∈B\} A×B{ <x,y>xA,yB}

性质:
Ø × B = A × Ø = Ø A × B ≠ B × A ( A × B ) × C ≠ A × ( B × C ) A × A × . . . × A = A n 笛 卡 儿 积 运 算 对 ∪ , ∩ 或 − 运 算 满 足 分 配 律 Ø×B=A×Ø=\textcolor{red}{Ø} \\A×B\textcolor{red}{≠}B×A \\(A×B)×C\textcolor{red}{≠}A×(B×C) \\A×A×...×A=\textcolor{red}{A^n} \\笛卡儿积运算对\textcolor{red}{∪},\textcolor{red}{∩}或\textcolor{red}{-}运算满足\textcolor{red}{分配律} Ø×BA×ØØA×B=B×A(A×B)×C=A×(B×C)A×A×...×A=An,

关系的概念、性质及运算

关系的概念

R=A×A 全等关系
R=Ø 空关系
A=B
R⊆A×B
二元关系
IA={<x,x>|x∈A} 恒等关系

二 元 关 系 \textcolor{red}{二元关系}
如 果 < x , y > ∈ R , 则 记 作 x R y 如 果 < x , y > ∉ R , 则 记 作 x R ˉ y R 中 所 有 序 偶 的 第 一 个 元 素 称 为 R 的 定 义 域 , 记 作 d o m R R 中 所 有 序 偶 的 第 二 个 元 素 称 为 R 的 值 域 , 记 作 r a n R 如果<x,y>∈R,则记作\textcolor{red}{xRy} \\如果<x,y>∉R,则记作\textcolor{red}{x\bar{R}y} \\R 中所有序偶的第一个元素称为 R 的\textcolor{red}{定义域},记作 \textcolor{red}{dom R} \\R 中所有序偶的第二个元素称为 R 的\textcolor{red}{值域},记作 \textcolor{red}{ran R} <x,y>RxRy<x,y>/RxRˉyRRdomR

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值