序偶与笛卡儿积
两个具有固定次序的元素 a,b 组成一个有序对被称为 序 偶 \textcolor{red}{序偶} 序偶,记作 < a , b > \textcolor{red}{<a,b>} <a,b>,其中 a 称作第一个元素,b 称作第二个元素
任意给定两个集合 A 和 B ,所有第一元素属于 A,第二元素属于 B 的序偶所组成的集合,称为 A 和 B 的 笛 卡 尔 积 \textcolor{red}{笛卡尔积} 笛卡尔积,记作 A × B \textcolor{red}{A×B} A×B
A × B = { < x , y > ∣ x ∈ A , y ∈ B } A×B=\{<x,y>|x∈A,y∈B\} A×B={ <x,y>∣x∈A,y∈B}
性质:
Ø × B = A × Ø = Ø A × B ≠ B × A ( A × B ) × C ≠ A × ( B × C ) A × A × . . . × A = A n 笛 卡 儿 积 运 算 对 ∪ , ∩ 或 − 运 算 满 足 分 配 律 Ø×B=A×Ø=\textcolor{red}{Ø} \\A×B\textcolor{red}{≠}B×A \\(A×B)×C\textcolor{red}{≠}A×(B×C) \\A×A×...×A=\textcolor{red}{A^n} \\笛卡儿积运算对\textcolor{red}{∪},\textcolor{red}{∩}或\textcolor{red}{-}运算满足\textcolor{red}{分配律} Ø×B=A×Ø=ØA×B=B×A(A×B)×C=A×(B×C)A×A×...×A=An笛卡儿积运算对∪,∩或−运算满足分配律
关系的概念、性质及运算
关系的概念
R=A×A | 全等关系 |
---|---|
R=Ø | 空关系 |
A=B R⊆A×B |
二元关系 |
IA={<x,x>|x∈A} | 恒等关系 |
二 元 关 系 \textcolor{red}{二元关系} 二元关系:
如 果 < x , y > ∈ R , 则 记 作 x R y 如 果 < x , y > ∉ R , 则 记 作 x R ˉ y R 中 所 有 序 偶 的 第 一 个 元 素 称 为 R 的 定 义 域 , 记 作 d o m R R 中 所 有 序 偶 的 第 二 个 元 素 称 为 R 的 值 域 , 记 作 r a n R 如果<x,y>∈R,则记作\textcolor{red}{xRy} \\如果<x,y>∉R,则记作\textcolor{red}{x\bar{R}y} \\R 中所有序偶的第一个元素称为 R 的\textcolor{red}{定义域},记作 \textcolor{red}{dom R} \\R 中所有序偶的第二个元素称为 R 的\textcolor{red}{值域},记作 \textcolor{red}{ran R} 如果<x,y>∈R,则记作xRy如果<x,y>∈/R,则记作xRˉyR中所有序偶的第一个元素称为R的定义域,记作domR