python编程的线性/非线性规划问题求解

本文介绍了如何使用Excel和Python解决线性规划问题,并探讨了利用拉格朗日乘子法手动及编程求解的方法。通过Excel的规划求解模块设定目标函数和约束条件,找到最优解。Python中则利用scipy库实现线性规划的求解。同时,文章详细阐述了拉格朗日乘子法的步骤,展示如何结合编程寻找极值。
摘要由CSDN通过智能技术生成

一、用Excel完成线性规划问题的求解

  1. 建立数据源
    在这里插入图片描述

  2. 写出资源配置三要素
    在这里插入图片描述
    在这里插入图片描述

  3. 在excel中设置目标函数
    根据前面的分析可知,目标函数为E2,E6与F2, F6区域两列数组对应元素的乘积之和,在C10单元格中输入=SUMPRODUCT (E2:E6,F2:F6)
    在这里插入图片描述

  4. 在excel中设置约束条件
    在这里插入图片描述

  5. 加载excel规划求解模块
    选择“文件”→“选项”→“加载项"→“转到”,勾选“规划求解加载项”。单击“确定"按钮。在“数据”菜单下就出现了“规划求解”模块(操作过程同“数据分析”模块的加载)
    在这里插入图片描述

  6. 设置决策变量和目标函数
    在这里插入图片描述

  7. 设置约束条件
    添加约束条件1
    在这里插入图片描述
    添加约束条件2
    在这里插入图片描述
    添加约束条件3
    在这里插入图片描述
    添加约束条件4
    在这里插入图片描述
    添加约束条件5
    在这里插入图片描述
    添加约束条件6
    在这里插入图片描述
    在这里插入图片描述
    最终添加结果
    在这里插入图片描述

  8. 点击求解,得到最终结果
    在这里插入图片描述

二、用python完成线性规划问题的求解

  1. 设置约束条件
    在这里插入图片描述

  2. 使用scipy库对线性规划的最优解、最大值进行求解

# 导入包
from scipy import optimize
import numpy as np
#创建矩阵,c为目标函数的矩阵,A_ub为约束条件的左边构成的矩阵,B_ub为约束条件的右边
c=np.array([600,800,500,400,300])
A_ub=np.array([[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值