豆瓣评分9.7!看完这本书终于搞懂了深度学习与神经网络!

今天给大家分享的是由复旦大学邱锡鹏老师潜心力作的神经网络与深度学习PPT与书籍!
在这里插入图片描述

本书是深度学习领域的入门教材,系统地整理了深度学习的知识体系,并由浅入深地阐述了深度学习的原理、模型以及方法 ,使得读者能全面地掌握深度学习的相关知识,并提高以深度学习技术来解决实际问题的能力。
在这里插入图片描述

本书的目的是使得读者能够掌握神经网络与深度学习技术的基本原理,知其然还要知其所以然,全书共15个章节:
在这里插入图片描述

目录:

第 1 章是绪论,介绍人工智能、机器学习、深度学习的概要,使读者对相关知识进行全面的了解。
第 2、3 章介绍了机器学习的基础知识。
第 4、5、6 章分别讲述三种主要的神经网络模型:前馈神经网络、卷积神经网络和循环神经网络。在第 6 章中略提了下图网络的内容。
第 7 章介绍神经网络的优化与正则化方法。

第 8 章介绍神经网络中的注意力机制和外部记忆。
第 9 章简要介绍了一些无监督学习方法。
第 10 章中介绍一些和模型独立的机器学习方法:集成学习、协同学习、多任务学习、迁移学习、终生学习、小样本学习、元学习等。这些都是目前深度学习的难点和热点问题。
第 11 章介绍了概率图模型的基本概念,为后面的章节进行铺垫。
第 12 章介绍两种早期的深度学习模型:玻尔兹曼机和深度信念网络。
第 13 章介绍最近两年发展十分迅速的深度生成模型:变分自编码器和对抗生成网络。
第 14 章介绍了深度强化学习的知识。
第 15 章介绍了应用十分广泛的序列生成模型。
在这里插入图片描述

该书目前豆瓣评分 9.7 分,是入门深度学习最经典的几本中文教材之一,为了方便学习,我

整理了 pdf 供大家下载

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值