递归中有两个重要概念:
1.递归边界
2.递归式
最简单的递归如阶乘,斐波那契数列
全排列问题
若把问题描述成“输出1-n这n个整数的全排列“,那么就可以将其分为若干个子问题:”输出以1开头的全排列””输出以2开头的全排列”……”输出以n开头的全排列”。不妨设一个数组P,用于存放当前的排列,在设一个散列数组hashTable,其中hashTable[x]当整数x已经在数组P中时为true。
现在按顺序往P的第一位到第n位填入数字。不妨假设已经填好了P[1]-P[index-1],准备填入P[index].显然需要枚举1-n,如果当前枚举的数字x还没有在P[1]-P[index-1]中(即hashTable[x]==false),那么就填入P[index],同时将hashTable[x]置为true,然后处理P的第index+1位(即进行递归)。递归完成时,再将hashTable[x]还原为false,以便让P[index]填下一个数字。
示例程序
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<math.h>
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { false }, result[100] = { 0 };
int count = 0,num,a[100];
//全排列
void generateP(int index)
{
if (index == n + 1)
{
for (int i = 1; i <= n; i++)
{
printf("%d ", P[i]);
}
printf("\n");
return;
}
for (int x = 1; x <= n; x++)
{
if (hashTable[x] == false)
{
P[index] = x;
hashTable[x] = true;
generateP(index + 1);
hashTable[x] = false;
}
}
}
int main()
{
n = 3;
generateP(1);
return 0;
}
输出
再来看n皇后问题。
可以在全排列问题的基础上改进
示例程序
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<math.h>
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { false }, result[100] = { 0 };
int count = 0,num,a[100];
void generateP(int index)
{
if (index == n + 1)
{
int ret=0;
for (int i = 1; i <= n; i++)
{
ret = ret * 10 + P[i];
}
result[count] = ret;//将结果转为int并存入result[]
count++;//可行方案数+1
return;
}
for (int x = 1; x <= n; x++)//第x行
{
if (hashTable[x] == false)//如果第x行还没有皇后
{
bool flag = true;//flag为true表示皇后不冲突
for (int pre = 1; pre < index; pre++)//遍历之前的皇后
{
if (abs(index - pre) == abs(x - P[pre]))//如果在对角线
{
flag = false;//flag为false
break;//退出
}
}
if (flag)//如果flag为true,即可以把皇后放在第x行
{
P[index] = x;//令第index列皇后的行号为x
hashTable[x] = true;//第x行已被占用
generateP(index + 1);//递归处理第index+1行
hashTable[x] = false;//递归完毕,置false
}
}
}
}
int main(int argc, char** argv)
{
n = 8;
generateP(1);
while ((scanf("%d", &num)) != EOF)
{
for (int i = 0; i < num; i++)
{
scanf("%d", &a[i]);
}
for (int i = 0; i < num; i++)
{
printf("%d\n", result[a[i]-1]);
}
}
return 0;
}
输出