【论文阅读】FederBoost: Private Federated Learning for GBDT

FederBoost是一种支持横向和纵向联邦学习的GBDT框架,解决了处理垂直分割数据和训练决策树的问题。在垂直联邦学习中,通过样本顺序和桶化策略实现隐私保护,无需加密操作。在水平联邦学习中,提出了一种新的分布式桶构建方法。FederBoost在保持AUC性能的同时,保证了训练效率和数据隐私。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文简介:FederBoost: Private Federated Learning for GBDT——将GBDT模型应用于横向联邦学习和纵向联邦学习

论文地址:[2011.02796] FederBoost: Private Federated Learning for GBDT (arxiv.org)

1. 每文三问

①文章在解决什么问题?

FL 有两个问题尚未解决:

unable to handle vertically partitioned data
unable to support decision trees
现有的用于垂直分区数据或决策树的 FL 解决方案需要大量的加密操作。

②用了什么方法 (创新方法) ?

提出框架 FederBoost,它支持在 both horizontally and vertically partitioned data 训练 GBDT。vertical FederBoost 不需要任何加密操作,horizontal FederBoost 只需要轻量级的安全聚合。

③效果如何?

对于 vertical and horizontal FederBoost 都实现了相同水平的 AUC ,即使是在广域网中,也能在半小时内完成训练。

AUC是一个用于二分类模型的模型评价指标

https://zhuanlan.zhihu.com/p/33407505

2. Introduction

设计 FederBoost 的一个关键启发是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轩軒轩儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值