【每日一题】447. 回旋镖的数量-2023.1.8

该篇文章讨论了如何计算给定二维平面上互不相同的点集合中,满足特定条件(两点间距离等于到另一点的欧式距离)的回旋镖数量,通过使用哈希表实现高效统计距离出现次数并计算组合数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:

447. 回旋镖的数量

给定平面上 n 对 互不相同 的点 points ,其中 points[i] = [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和 j 之间的距离和 i 和 k 之间的欧式距离相等(需要考虑元组的顺序)。

返回平面上所有回旋镖的数量。

示例 1:

输入:points = [[0,0],[1,0],[2,0]]
输出:2
解释:两个回旋镖为 [[1,0],[0,0],[2,0]][[1,0],[2,0],[0,0]]

示例 2:

输入:points = [[1,1],[2,2],[3,3]]
输出:2

示例 3:

输入:points = [[1,1]]
输出:0

提示:

  • n == points.length
  • 1 <= n <= 500
  • points[i].length == 2
  • -104 <= xi, yi <= 104
  • 所有点都 互不相同

解答:

代码:

class Solution {
    public int numberOfBoomerangs(int[][] points) {
        int ans=0;
        for(int[] p1:points){
            Map<Integer,Integer> cnt=new HashMap<>();
            for(int[] p2:points){
                int d=(p1[0]-p2[0])*(p1[0]-p2[0])+(p1[1]-p2[1])*(p1[1]-p2[1]);
                cnt.put(d,cnt.getOrDefault(d,0)+1);
            }
            for(int x:cnt.values()){
                ans+=x*(x-1);
            }
        }
        return ans;
    }
}

结果:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

轩軒轩儿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值