杆梁单元及其坐标变换(工程有限元方法(曾攀))

在建筑结构中,杆、梁、板是主要的承力构件。杆梁单元及其坐标变换是有限元分析的基础。

1 杆单元

1.1 杆单元的刚度矩阵 

杆单元是最简单的标准单元

节点列阵为

  

 局部坐标系中,一维两节点杆单元两自由度的刚度矩阵和节点力列阵为(一维:局部坐标系与整体坐标系重合)

  

若该单元承受有沿轴向的分布外载,可以将其等效到节点上(沿轴向的质量分布可以等效到节点上;垂直轴向的质量将其视为均布荷载,从而转换为在节点处的力和转矩)

1.2 平面杆单元的坐标变换(二维)

坐标变换目的是将杆单元的局部坐标转移到整体坐标系中,方便总刚矩阵和总质量矩阵的集成。

局部坐标和整体坐标的节点列阵为:

 

如上图所示,ox表示局部坐标系;o\overline{x}\overline{y}就是整体坐标系。平面四自由度杆单元的变换矩阵为

那么,整体坐标系中的刚度矩阵和节点力列阵为

在这里仅给出二维两节点四自由度杆单元刚度矩阵的推导结果:

 1.3 空间杆单元的坐标变换(三维)

局部坐标和整体坐标的节点列阵为:

 空间六自由度杆单元的变换矩阵为(三维)

 那么,整体坐标系中的刚度矩阵和节点力列阵为

 2. 梁单元

2.1.1 纯弯梁单元(一维:局部坐标系与整体坐标系重合)

位移列阵:

 

一维两节点纯弯梁单元的刚度矩阵和节点力列阵为(局部坐标中)

 2.1.2 一般平面梁单元

 平面梁单元局部坐标系中的节点位移列阵和节点力列阵为

 将杆单元刚度矩阵与纯弯梁单元刚度矩阵进行组合,可得到一般平面梁单元刚度矩阵(局部坐标中)

  2.1.3 平面梁单元的坐标变换

整体坐标系中的节点列阵为:

 平面六自由度梁单元的坐标变换矩阵为:

2.2.1 空间梁单元的刚度矩阵(局部坐标系中)

 局部坐标系中的节点位移列阵和节点力列阵为:

 空间梁单元的刚度矩阵(局部坐标系中)

 2.2.2 空间梁单元的坐标变换

 整体坐标系中的节点位移列阵为 

 

空间12自由度梁单元的坐标变换矩阵 (整体坐标系中

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值